• Title/Summary/Keyword: thermal loading effects

Search Result 166, Processing Time 0.026 seconds

Thermal Stability Analysis of a Flexible Beam Spacecraft Appendage (위성체 유연 보 구조물의 열 안정성 해석)

  • 윤일성;송오섭
    • Composites Research
    • /
    • v.15 no.3
    • /
    • pp.18-29
    • /
    • 2002
  • The bending vibration and thermal flutter instability of spacecraft booms modeled as circular thin-walled beams of closed cross-section and subjected to thermal radiation loading is investigated in this paper. The thin-walled beam model incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constituent materials. Thermally induced vibration response characteristics of a composite thin walled beam exhibiting the circumferantially uniform system(CUS) configuration are exploited in connection with the structural flapwise bending-lagwise bending coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. The numerical simulations display deflection time-history as a function of the ply-angle of fibers of the composite materials, damping factor, incident angle of solar heat flux, as well as the boundary of the thermal flutter instability domain. The adaptive control are provided by a system of piezoelectric devices whose sensing and actuating functions are combined and that are bonded or embedded into the host structure.

Preparation and Evaluation of Bupivacaine Microspheres by a Solvent Evaporation Method (II) (용매증발법에 의한 부피바카인 마이크로스피어의 제조 및 평가 (II))

  • 곽손혁;이시범;이종수;이병철;황성주
    • YAKHAK HOEJI
    • /
    • v.45 no.6
    • /
    • pp.623-633
    • /
    • 2001
  • Various bupivacaine-loaded microspheres were prepared using poly(d,1-lactide) (PLA) and poly(d,1-lactic-co-glycolide) (PLGA) by a solvent evaporation method for the sustained release of drug. The effects of process conditions such as drug loading, polymer type and solvent type on the characteristics of microspheres were investigated. The prepared microspheres were characterized for their drug loading, size distribution, surface morphology and release kinetics. Drug loading efficiency and yield of PLGA micro- spheres were higher than those of PLA microspheres. The prepared microspheres had an average particle size below 5${\mu}{\textrm}{m}$. The particle size range of microspheres was 1.65~2.24${\mu}{\textrm}{m}$. As a result of SEM, the particle size of PLA microspheres was smaller than that of PLGA microspheres. In morphology studies, microspheres showed a spherical shape and smooth surface in all process conditions. In thermal analysis, bupivacaine-loaded microspheres showed no peaks originating from bupivacaine. This suggested that bupivacaine base was molecular-dispersed in the polymer matrix of microspheres. The release pattern of the drug from microspheres was evaluated for 96 hours. The initial burst release of bupivacaine base decreased with increasing the molecular weight of PLGA, and the drug from microspheres released slowly. In conclusion, bupivacaine-loaded microspheres were successfully prepared from poly(d,1-lactide) and poly (d,1- lactic-co-glycolide) polymers with different molecular weights allowing control of the release rate.

  • PDF

Schemes to enhance the integrity of P91 steel reheat steam pipe of a high-temperature thermal plant (고온 화력 P91강 재열증기배관의 건전성 제고 방안)

  • Lee, Hyeong-Yeon;Lee, Jewhan;Choi, Hyun-Sun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.74-83
    • /
    • 2020
  • A number of so-called 'Type IV' cracking was reported to occur at the welded joints of the P91 steel or P92 steel reheat steam piping systems in Korean supercritical thermal power plants. The reheat steam piping systems are subjected to severe thermal and pressure loading conditions of coolant higher than 570℃ and 4MPa, respectively. In this study, piping analyses and design evaluations were conducted for the piping system of a specific thermal plant in Korea and suggestions were made how structural integrity could be improved so that type IV cracks at the welded joints could be prevented. Integrity evaluations were conducted as per ASME B31.1 code with implicit consideration of creep effects which was used in original design of the piping system and as per nuclear-grade RCC-MRx code with explicit consideration of creep effects. Comparisons were made between the evaluation results from the two design rules. Another approach with modification or reduction of the redundant supports in the piping systems was investigated as a tool to mitigate thermal stresses which should essentially contribute to prevention of Type IV cracking without major modification of the existing piping systems. In addition, a post weld heat treatment method and repair weld method which could improve integrity of the welded joint of P91 steel were investigated.

Effects of Retention Time on the Simultaneous of Odor Removal and Sludge Solubilization Using a Non-Thermal Plasma System (저온 플라즈마와 활성슬러지 복합 공정에서 체류시간 변화가 악취 저감 및 슬러지 가용화에 미치는 영향)

  • NamGung, Hyeong-Gyu;Hwang, Hyun-Jung;Song, Ji-Hyeon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.815-824
    • /
    • 2011
  • In this study, a non-thermal plasma system was employed to simultaneously remove odorous compounds and organic sludge. The system consisted of two reactors; the first one was the non-thermal plasma reactor where ozone was produced by the plasma reaction and the ozone oxidized hydrogen sulfide, the model odorous compound, and then the ozone-laden gas stream was introduced to the second reactor where wasted sludge was disintegrated and solubilized by ozone oxidation. In this study, the gas retention time (GRT) and the hydraulic retention time (HRT) were changed in the two-reactor system, and the effects of GRT and HRT on reduction efficiencies of odor and sludge were determined. As the GRT increased, the ozone concentration increased resulting in an increasing efficiency of hydrogen sulfide removal. However, the overall ozone loading rate to the second sludge reactor was the same at any GRT, which resulted in an insignificant change in sludge reduction rate. When HRTs in the sludge reactor were 1, 2, 4 hours, the sludge reduction rates were approximately 30% during the four-hour operation, while the rate increased to 70% at the HRT of 6 hours. Nevertheless, at HRTs greater than 4 hours, the solubilization efficiency was not proportionally increased with increasing specific input energy, indicating that an appropriate sludge retention time needs to be applied to achieve effective solubilization efficiencies at a minimal power consumption for the non-thermal plasma reaction.

A method on integrity evaluation with high reliability for superheater structure in a supercritical thermal power plant (초임계압 화력 과열기 구조의 고신뢰도 건전성 평가 방법)

  • Lee, Hyeong-Yeon;Ju, Yong-Sun;Choi, Hyun-Sun;Won, Min-Gu;Huh, Nam-Su
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.65-73
    • /
    • 2020
  • Integrity evaluations on a platen superheater were conducted as per ASME Section VIII Division 2(hereafter 'ASME VIII(2)') which was originally used for design with implicit consideration of creep effects. A platen superheater subjected to severe loading conditions of high pressure and high temperature at creep regime in a supercritical thermal plant in Korea was chosen for present study. Additional evaluations were conducted as per nuclear-grade high-temperature design rule of RCC-MRx that takes creep effects into account explicitly. Comparisons of the two results from ASME VIII(2) and RCC-MRx were conducted to quantify the conservatism of ASME VIII(2). From present analyses, it was shown that the design evaluation results exceeded allowable limits of RCC-MRx for the plant design conditions although limits of ASME VIII(2) were satisfied regardless of operation time, which means that design as per ASME VIII(2) might be potentially non-conservative in case of operation in creep range. A high-temperature design evaluation program as per RCC-MRx, called 'HITEP_RCC-MRx' has been used and it was shown that pressure boundary components can be designed reliably with the program especially for the loading conditions of long-term creep conditions.

Microstructural Effects on Hydrogen Delayed Fracture of 600MPa and 800MPa grade Deposited Weld Metal (600MPa급과 800MPa급 전용착금속의 미세조직에 따른 수소지연파괴 거동)

  • Kang, Hee Jae;Lee, Tae Woo;Yoon, Byung Hyun;Park, Seo Jeong;Chang, Woong Seong;Cho, Kyung Mox;Kang, Namhyun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.52-58
    • /
    • 2012
  • Hydrogen-delayed fracture (HDF) was analyzed from the deposited weld metals of 600-MPa and 800-MPa flux-cored arc (FCA) welding wires, and then from the diffusible hydrogen behavior of the weld zone. Two types of deposited weld metal, that is, rutile weld metal and alkali weld metal, were used for each strength level. Constant loading test (CLT) and thermal desorption spectrometry (TDS) analysis were conducted on the hydrogen pre-charged specimens electrochemically for 72 h. The effects of microstructures such as acicular ferrite, grain-boundary ferrite, and low-temperature-transformation phase on the time-to-failure and amount of diffusible hydrogen were analyzed. The fracture time for hydrogen-purged specimens in the constant loading tests decreased as the grain size of acicular ferrite decreased. The major trapping site for diffusible hydrogen was the grain boundary, as determined by calculating the activation energies for hydrogen detrapping. As the strength was increased and alkali weld metal was used, the resistance to HDF decreased.

Transverse cracking based numerical analysis and its effects on cross-ply laminates strength under thermo-mechanical degradation

  • Abdelatif, Berriah;Abdelkader, Megueni;Abdelkader, Lousdad
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1063-1077
    • /
    • 2016
  • Components manufactured from composite materials are frequently subjected to superimposed mechanical and thermal loadings during their operating service. Both types of loadings may cause fracture and failure of composite structures. When composite cross-ply laminates of type [$0_m/90_n]_s$ are subjected to uni-axial tensile loading, different types of damage are set-up and developed such as matrix cracking: transverse and longitudinal cracks, delamination between disoriented layers and broken fibers. The development of these modes of damage can be detrimental for the stiffness of the laminates. From the experimental point of view, transverse cracking is known as the first mode of damage. In this regard, the objective of the present paper is to investigate the effect of transverse cracking in cross-ply laminate under thermo-mechanical degradation. A Finite Element (FE) simulation of damage evolution in composite crossply laminates of type [$0_m/90_n]_s$ subjected to uni-axial tensile loading is carried out. The effect of transverse cracking on the cross-ply laminate strength under thermo-mechanical degradation is investigated numerically. The results obtained by prediction of the numerical model developed in this investigation demonstrate the influence of the transverse cracking on the bearing capacity and resistance to damage as well as its effects on the variation of the mechanical properties such as Young's modulus, Poisson's ratio and coefficient of thermal expansion. The results obtained are in good agreement with those predicted by the Shear-lag analytical model as well as with the obtained experimental results available in the literature.

A Study on Testing of 1/4-scale and Full-size Seismic Isolation Bearings (축소모델과 실모델 면진베어링의 성능실험에 관한 연구)

  • 정민기;정지만;김두훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.194-202
    • /
    • 1996
  • An approach to increase the seismic resistance of large structures is to reduce the seismic forces, to which structures are subjected by base isolation systems. The anti-seismic performance of base-isolated beatings has been verified experimentally by shaking table tests. However, it may be difficult to perform the tests for the full-scale beatings of base-isolated structures. Therefore, the test program was designed to evaluate the reliability and properties of the beatings under a range of loading conditions including axial stress, loading frequency and direction, and temperature. The effects of scale were also evaluated by comparing the results of the 1/4-scale beatings with those from the full-scale bearings, and the ultimate behavior of both types of bearings with evaluated through a series of roll-out tests. This report draws comparisons among the different tests and bearings to determine the importance of various factors including load history, axial stress, and frequency. Comparisons between the 1/4-scale bearings were difficult because of the scaling effects in manufacturing and thermal radiation, but qualitative results from the 1/4-scale bearings can certainly be extrapolated the full-scale bearings.

  • PDF

Design of High Stability Space Tube

  • Lee Deog-Gyu;Woo Sun-Hee;Lee Eung-Shik;Youn Heong-Sik;Paik Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.479-482
    • /
    • 2004
  • Laminate Design of a composite tube for a space telescope(Fig. 1) under hygrothermal load is studied. Carpet plots for laminate effective engineering constants are generated and used for selecting the best tube lay-ups satisfying the optomechanical requirements for a space telescope being dimensional1y stable under orbital thermal loading. Despace of the tubes constructed with the selected lay-ups are calculated with a Zig-Zag Triangular Element which accurately represents through thickness stress variations for laminated structures. The effects of moisture absorption when exposed to humidity environment and moisture desorption through outgassing on the dimensional stability are also investigated.

  • PDF

Existing concrete dams: loads definition and finite element models validation

  • Colombo, Martina;Domaneschi, Marco;Ghisi, Aldo
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.2
    • /
    • pp.129-144
    • /
    • 2016
  • We present a methodology to validate with monitoring data finite element models of existing concrete dams: numerical analyses are performed to assess the structural response under the effects of seasonal loading conditions, represented by hydrostatic pressure on the upstream-downstream dam surfaces and thermal variations as recorded by a thermometers network. We show that the stiffness effect of the rock foundation and the surface degradation of concrete due to aging are crucial aspects to be accounted for a correct interpretation of the real behavior. This work summarizes some general procedures developed by this research group at Politecnico di Milano on traditional static monitoring systems and two significant case studies: a buttress gravity and an arch-gravity dam.