• Title/Summary/Keyword: thermal link

Search Result 69, Processing Time 0.028 seconds

Analysis of Mechanical Stress Due to Magnetic Force and Thermal Expansion in Brsushless Motor (브러시레스 전동기에서 전자기적 가진력 및 열에 의한 기계적 음력해석)

  • Ha, Gyeong-Ho;Hong, Jeong-Pyo;Lee, Geun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.5
    • /
    • pp.221-227
    • /
    • 2002
  • This paper deals with the mechanical stress analysis due to electromagnetic forces and the optimal design of the link considering the stress. The link in Interior Permanent Magnet Brushless Motor(IPM) have influence on both mechanical and magnetic performance. The decrease of the link thickness serves to improve the torque, whereas this decreases the strength of link. Therefore, it is necessary to determine the appropriate link thickness considering electromagnetic forces and thermal expansion. The effects of the variation of link thickness on the mechanical stress and the electromagnetic performance are analyzed by the structural and electromagnetic Finite Element Method. In addition, the mechanical structure design of the link is performed to reinforce the mechanical strength against magnetic forces while preserving a food magnetic torque.

Study on the Electrical Insulation of Current Lead in the conduction-cooled 1-2kV Class High-Tc Superconducting DC Reactor (전도냉각되는 1-2kV급 고온초전도 직류리액터 전류도입부의 전기적 절연에 대한 연구)

  • 배덕권;안민철;이찬주;정종만;고태국;김상현
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.30-34
    • /
    • 2002
  • In this Paper, Insulation of current lead in the conduction-cooled DC reactor for the 1.2kV class 3 high-Tc superconducting fault current limiter(SFCL) is studied. Thermal link which conducts heat energy but insulates electrical energy is selected as a insulating device for the current lead in the conduction-cooled Superconducting DC reactor. It consists of oxide free copper(OFC) sheets, Polyimide films, glass fiberglass reinforced Plastics (GFRP) plates and interfacing material such an indium or thermal compound. Through the test of dielectric strength in L$N_2$, polyimide film thickness of 125 ${\mu}{\textrm}{m}$ is selected as a insulating material. Electrical insulation and heat conduction are contrary to each other. Because of low heat conductivity of insulator and contact area between electrical insulator and heat conductor, thermal resistance of conduction-cooled system is increased. For the reducing of thermal resistance and the reliable contact between Polyimide and OFC, thermal compound or indium can be used As thermal compound layer is weak layer in electrical field, indium is finally selected for the reducing of thermal resistance. Thermal link is successfully passed the test. The testing voltage was AC 2.5kVrms and the testing time was 1 hour.

Thermal analysis of Current lead for Liquid/Conduction cooling on Superconducting system (액체/전도냉각형 초전도 시스템에서 전류도입선의 열적 해석)

  • 권기범;김형진;정은수;장호명
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.178-181
    • /
    • 2003
  • Intermediate cooling for current lead is used of thermal link in conduction cooling and cooled of itself in liquid cooling because it is put in liquid. If a existing formula for cooling load and optimal diameter-length of current lead is applied, it generate some more cooling load. Therefore, variation of thermal link height and holding depth in liquid is considered. This result is used of reducing cooling load of current lead occupying most of superconducting system load and applying liquid/conduction cooling systems.

  • PDF

Reliability evaluation of brittle structures under thermal shocks (열충격이 작용하는 취성구조의 신뢰성 평가)

  • 이치우;장건익;김종태
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.58-64
    • /
    • 1998
  • An analysis method for the reliability of ceramic structures subjected to thermal shocks is presented. Flaws with the size of given probability distribution function are assumed to be distributed at random with a certain density per unit volume in the structures. Criterions for crack instability are derived for brittle solids under general thermal stresses. A probabilistic failure model is presented to study the probability of crack instability for brittle solids containing cracks with uncertain size. The reliabilities of brittle structures are evaluated based on the weakest-link hypothesis, which states that a structure fails when the cracks in any differential volume become unstable. A numerical example is given to demonstrate the application of the proposed method.

  • PDF

Reliability Evaluation of Ceramic Structures Under Thermal Shocks (열충격이 작용하는 세라믹구조의 신뢰성 평가)

  • 김종태;심확섭;장건익;이치우;이환우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.954-958
    • /
    • 1996
  • An analysis method for the reliability of ceramic structures subjected to thermal shocks is presented, Flaws with the size of given probability distribution function are assumed to be distributed at random with a certain density per unit volume in the structures. Criterions for crack instability are derived for brittle solids under general thermal stresses. A probabilistic failure model is presented to study the probability of crack instability for blittle solids containing cracks with uncertain crack size. The reliabilities of brittle structures are evaluated based on the weakest-link hypothesis, which states that a structure fails when the cracks in any differential volume become unstable. A numerical example is given to demonstrate the application of the proposed method.

  • PDF

Comparative Reliability Analysis of DC-link Capacitor of 3-Level NPC Inverter Considering Mission-Profiles of PV Systems (태양광 시스템의 미션 프로파일 고려한 3-레벨 NPC 인버터의 DC-link 커패시터 신뢰성 비교 분석)

  • Jae-Heon, Choi;Ui-Min, Choi
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.535-540
    • /
    • 2022
  • DC-link capacitors are reliability-critical components in a photovoltaic (PV) inverter. Typically, the lifetime of a DC-link capacitor is evaluated by considering the voltage and hot-spot temperature of the capacitor under the specific operating condition of the PV inverter. However, the output of the PV inverter is determined by solar irradiation and ambient temperature, which vary with the seasons; accordingly, the hot-spot temperature of the capacitor also changes. Therefore, the mission profile of the PV system should be considered to effectively evaluate the reliability of the DC-link capacitor. In this study, the reliability of the DC-link capacitor of a three-level NPC inverter is comparatively analyzed with and without considering the mission profiles of the PV system, where two mission profiles recorded in Arizona and Iza are considered. The accumulated damage of the DC-link capacitor is calculated based on the lifetime model by analyzing its thermal loading. Afterward, a reliability evaluation of the DC-link capacitor is performed at the component level and then at the system level by considering all capacitors by means of Monte Carlo analysis. Results reveal the importance of performing a mission-profile-based reliability evaluation during the design of high-reliability PV inverters to achieve the target reliability performance.

ATM cell transmission performance evaluation for co-channel interference in the next generation satellite B-ISDN/ATM networks (차세대 위성 B-ISDN/ATM 망에서 공동채널간섭에 대한 ATM 셀 전송 성능평가)

  • 김병균;김신재;최형진
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.3
    • /
    • pp.9-18
    • /
    • 1998
  • For constructionof the next generation satellite B-ISDN/ATM networks considering integration with terrestrial information infrastructure networks, various high speed and wideband satellites with be launched and they will make used of frequency reue techniques for efficient management of limited frequency resource. Therefore, CCI(Co-Channel Interference) inherent in frequency reuse will be a dominant factor in performance degradation of satellite networks. This paper alanyzes the ATM cell transmission performance degradation caused by CCI. The satellite link, including up-link and down-link thermal noise, CCI, and nonlinear satellite transponder, is modeled and interleaving technique is used for compensating the ATM cell transmission performance degradation caused by burst error of satellite link. First, each satellite link subsystem is analyzed in detail and then end-to-end ATM cell transmission performance is evaluated with BER and CLR. Specifically, ATMcell transmission performance degradation caused by CCI is evaluated in detail.

  • PDF

Specific Heat Measurement of Insulating Material using Heat Diffusion Method

  • Choi, Yeon-Suk;Kim, Dong-Lak
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.2
    • /
    • pp.32-35
    • /
    • 2012
  • The objective of the present work is to develop a precise instrument for measuring the thermal property of insulating material over a temperature range from 30 K to near room temperature by utilizing a cryocooler. The instrument consists of two thermal links, a test sample, heat sink, heat source and vacuum vessel. The cold head of the cryocooler as a heat sink is thermally anchored to the thermal link and used to bring the apparatus to a desired temperature in a vacuum chamber. An electric heater as a heat source is placed in the middle of test sample for generating uniform heat flux. The entire apparatus is covered by thermal shields and wrapped in multi-layer insulation to minimize thermal radiation in a vacuum chamber. For a supplied heat flux the temperature distribution in the insulating material is measured in steady and transient state. The thermal conductivity of insulating material is measured from temperature difference for a given heat flux. In addition, the specific heat of insulating material is obtained by solving one-dimensional heat diffusion equation.

Effect of Radiative Mean Temperature on Thermal Comfort of Underfloor Air Distribution System (바닥공조시스템에서 복사온도가 열적쾌적성에 미치는 영향)

  • Chung, Jae-Dong;Hong, Hi-Ki;Yoo, Ho-Seon
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.15-20
    • /
    • 2006
  • Despite the fact that UFAD (Under Floor Air Distribution) systems have many benefits and are being applied in the field in increasing numbers, there is a strong need for an improved fundamental understanding of several key performance features of these systems. This study numerically investigates the effect of design parameters on the performance of UFAD, especially focused on thermal comfort. The design parameters considered in this study include supplied air temperature, supplied flow rate, diffuser shape, swirl, diffuser location, and floor-to-floor height. Also this study has compared UFAD with over head system, on the point of thermal comfort by evaluating PMV using radiative mean temperature, which shows how inadequate the evaluation of thermal comfort can be when radiation is neglected. Until now, the radiative temperature has been the missing link between CFD and thermal comfort, but the present study paves the way for overcoming this weakness.

  • PDF

Analysis of Joule-heat Characteristics according to the DC-link Capacitor Film Geometrics (DC-link Capacitor필름 형상에 따른 Joule-heat특성 분석)

  • Jeon, Yong Won;Kim, Young Shin;Jeon, Euy Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.42-48
    • /
    • 2020
  • As global warming accelerates, eco-friendly electric cars are being developed to reduce carbon dioxide emissions, and power conversion inverters are used to drive motors. Among inverter components, DC-link capacitor is heated by high current usage, which causes problems such as performance and life-saving of inverter. Although metal cases with good thermal performance have been used to solve this problem, it is difficult to apply them in practice due to insulation problems with other parts. In this paper, the Heat-Generation influence factor of DC-link capacitor is analyzed. Variables on heat-generation are set at 3 levels for film width, inductance, and film thickness. Box-Behnken to 13 tests using the design and minimal deviations, e.g. through the experiment three times by each level. The surface of the film k type by attaching the sensor current is measured temperature. Capacitance was set to a minimum level of 200 ㎌ and had a frequency of 16 kHz with Worst case, ambient temperature of 85℃ and a ripple current of 50 Ams was applied. The temperature at the measurement point was collected in the data logger after sampling at 1 minute intervals for 2 hours after saturation with the ambient temperature. This experiment confirmed that setup factors are correlated with heat-generation.