• 제목/요약/키워드: thermal insulation

검색결과 1,179건 처리시간 0.035초

지하외벽체의 단열유형별 열성능에 관한 실험적 연구 (An Experimental Study on the Thermal Performance by the Type of Thermal Insulation in Basement Structures)

  • 이재윤
    • 한국태양에너지학회 논문집
    • /
    • 제22권1호
    • /
    • pp.73-80
    • /
    • 2002
  • This is study of the planning of thermal insulation to prevent heat loss in a basement, is aimed at investigating the heat loss from the basement space and basement structures. The results analyzed in these researches are as follows; To analyze the heat loss from basement structures, this study experimented on the heat flow phenomenon of a non-insulation structure and two insulation structure models. From the result, the interior surface temperature of two insulation structures(B, C, model) showed an equal temperature, but the interior surface temperature of a non-insulation structure (A model) is different from the two models, Therefore, we understand that the insulator constructed in the basement structure makes a role of preventing the heat loss from the basement. In addition, the exterior surface temperature of two insulation structure models showed an equal temperature. Specially, judging from the temperature difference of C model. we understand that the performance of insulator is low under the definite depth of underground. The thermal insulation design should be constructed under the definite depth of underground considering outdoor and building conditions.

유기질 단열재 열전도율의 경시 변화 (Changes in the Thermal Conductivity of Organic Insulators over Time)

  • 김해나;홍상훈;정의인;김봉주
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.219-220
    • /
    • 2023
  • The thermal conductivity of the insulation material has a great influence on the heat transmission coefficient, which is currently used for energy evaluation of buildings. The thermal conductivity of insulation changes with changes in the environment, such as humidity and ultraviolet rays, and can be expected to with the passage of time. But there is a lack of data on this, so this study measured the thermal conductivity of organic insulation according to environmental conditions and time, As a result, in the case of XPS, the thermal conductivity value increased over time, which is estimated to be due to the decrease in insulation performance as the foaming gas escapes to the outside, and in the case of PIR class2 No.2 and PIR noncombustible, the increased thermal conductivity value is similar, but in the case of PIR class2 No.2, a relatively moderate increase can be seen, and in the case of PIR noncombustible, a large increase is seen at the beginning, which is judged to be due to the decrease in insulation performance as the internal foaming gas is substituted with air from the outside.

  • PDF

국내 발전소 지붕방수설계 시스템 및 단열 성능에 관한 연구 (A Study on the domestic power plant roof waterproofing system & insulation efficiency)

  • 정광호
    • 한국디지털건축인테리어학회논문집
    • /
    • 제11권1호
    • /
    • pp.33-42
    • /
    • 2011
  • As the development of construction technology and new materials, building requirements has been varied gadually. Comfortable environment and serviceability of production activity and energy conservation are being dealt with very seriously. Recently localization of engineering technology of Power Plant, however, construction materials and domestic technology are being developed forcingly. According to above topics this thes is going to study roof waterproofing, thermal insulation and evaluate adiabatic performance and evaluation of properties of waterproofing materials and energy conservation. The results of studying and evaluating of roof waterproofing, thermal insulation and adiabatic performance of Power Plant are as follows. 1. Sheet waterproofing method is better than that of asphalt waterproofing method in that adaptability of wearhertight, thermal resistant, contraction and expansion. 2. It is required to replace polyurethane or ethylene used as thermal insulation with rock wool which is noncombustible materials. 3. It is recommended to usd outer insulation method than inner insulation method due to superioty of outer insulation method. Efficiency of insulation materials used in power plant is generally good except perlite mortar used in the power plant(YGN 1-2, GRI 1-2).

SOFC를 위한 고온용 적층단열재 개발 (Development of Multiple Layers Insulation for SOFC)

  • 최종균;황승식;최규홍
    • 한국수소및신에너지학회논문집
    • /
    • 제29권4호
    • /
    • pp.386-392
    • /
    • 2018
  • Fuel cells are known as eco - friendly energy facilities that can use heat energy and electric energy at the same time. Fuel cells are classified according to the temperature and material used, and solid oxide fuel cell (SOFC) is relatively high temperature ($700-800^{\circ}C$). SOFC requires a hot box consisting of a high temperature stack, a reformer, a burner, and the heat exchangers in order to use energy efficiently. The hot box needs to maintain heat insulation performance at high temperature to reduce heat loss. However, Fibrous insulation, which is widely used, needs to be improved because it has a disadvantage that the thermal conductivity is rapidly increased due to the increase of temperature. Therefore, this study was carried out to develop a thermal insulation, which is applied to multiple layers insulation (MLI) technic, that can be used under SOFC operating conditions and prevent a drastic drop in thermal conductivity at high temperature. The developed insulation is consist of a thermally conductive material, a spacer, and a reflective plate. The thermal conductivity of the insulation was measured by in the thermal conductivity measuring device at high temperature range. As a result, it was confirmed that the developed layers insulation have an good thermal conductivity (0.116 W/mK) than fibrous insulation (0.24 W/mK) as a radiation shielding effect at a high temperature of 1,173 K.

건물 외피 투과형단열 벽체의 열성능 해석 연구 (Thermal Performance of Building Envelope with Transparent Insulation Wall)

  • 장용성;윤용진;박효순
    • KIEAE Journal
    • /
    • 제5권1호
    • /
    • pp.27-33
    • /
    • 2005
  • Global efforts have made to reduce energy consumption and $CO_2$ gas emission. One of the weakest parts for energy loss through the whole building components is building envelopes. Lots of technologies to increase the thermal performance of building envelopes have been introduced in recent year. Transparent Insulation Wall(TIW) is a new technology for building insulation and has been function both solar transmittance and thermal insulation. A mathematical model of a Transparent Insulation Wall equipped with south wall was proposed in order to predict thermal performance under varying climates(summer and winter). Unsteady state heat transfer equations were set up using an energy balance equation and solved using Gauss-Seidel iteration solution procedure. The thermal performance of the TIW determined from a wall surface and air layer temperature, non-airconditioned room temperature and air conditioning load. As a result, this numerical study shows that the TIW is effective in an air conditioning load reduction. Further experimental study is required to establish complete TIW system.

가정용 냉장고의 단열 최적화 (Optimization of Heat Insulation System for a Household Refrigerator)

  • 박진구
    • 설비공학논문집
    • /
    • 제15권2호
    • /
    • pp.95-102
    • /
    • 2003
  • Optimization for the insulation thickness and external shape of a household refrigerator is peformed in order to minimize thermal load through the insulation wall. The one dimensional conduction heat transfer model is adopted to calculate thermal load. Calculus of variation is employed to optimize the thickness and shape of refrigerator or freezer. The uniform distribution of an insulation thickness and cubed external shape make thermal load minimize. Finally, by using both of the computational and experimental method, the thermal load is minimized for a refrigerator/freezer. It is shown that there exists optimal thickness of insulation walls and external shape for given the external cabinet dimensions and freezer and refrigerator internal volumes, Also, the analytical results are well agreed with the experimental results.

새롭게 개발된 겨울용 공기주입형 배플 패딩 재킷과 기존 방한 패딩 재킷들의 보온력 비교 평가 (Comparison and Evaluation of Clothing Insulation of Newly-Developed Air-Filled Baffle Jackets and Down Padded Jackets)

  • 권주연;김시연;백윤정;이주영
    • 한국의류산업학회지
    • /
    • 제23권2호
    • /
    • pp.261-272
    • /
    • 2021
  • The purpose of the present study was to evaluate the thermal insulation of air-filled winter jackets according to the amount of air-filler using a thermal manikin. The insulation of these jackets' was compared to a down padded jacket with an identical design and size. The amounts of air-filler were 100% (26,219 cm3), 70% (18,645 cm3), 50% (13,110 cm3), and 0% (0 cm3). The results showed that a clothing insulation (Icl) of 0%, 50%, 70%, and 100% air, and 100% down jackets was 0.208, 0.243, 0.207, 0.176, and 0.315 clo, respectively. In addition, the down jacket with waisttaped had a clothing insulation of 0.369 clo. However, the highest value of clothing insulation per clothing weight was the 50% air-filled jacket in all conditions. In terms of regional power consumption of the thermal manikin, the down jacket consumed less power for the shoulder and chest than the air-filled jackets. In conclusion, in order to maximize the thermal insulation of air-filled jackets, an optimal amount of air-filler, that is, an amount which does not compromise (break) the layer of inner air between the surface of manikin and the lining of the jacket, should be explored. Further studies on lining materials, end-closed design, and changes in thermal insulation under the conditions of strong wind or heavy snow are recommended.

투습방수의류의 보온력 및 증발저항 평가와 관련 변인 (An Evaluation of Factors Influencing the Thermal Insulation and Evaporative Resistance of a Waterproof and Breathable Garment System)

  • 심현섭
    • 한국지역사회생활과학회지
    • /
    • 제25권4호
    • /
    • pp.549-556
    • /
    • 2014
  • This study evaluates the thermal insulation and evaporative resistance of a waterproof and breathable garment system and determines the factors influencing its thermal performance. The experimental garments were composed of underwear (shirts with 100% wool and 100% polyester) and outerwear (jackets and pants with a vapor-permeable membrane and a vapor-impermeable membrane). Data on clothing insulation in a dry condition ($10^{\circ}C$) and a wet condition ($10^{\circ}C$, 40% R.H.), evaporative resistance ($34^{\circ}C$, 40% R.H., and $10^{\circ}C$, 40% R.H.), and microclimate vapor pressure were collected and analyzed. According to the results, the thermal insulation of the experimental garment system ranged 1.27~1.40 in the dry condition and 0.40~0.89 in the wet condition at $10^{\circ}C$. Evaporative resistance ranged $41{\sim}525m^2Pa/W$. A decrease in thermal insulation by wetting underwear ranged 31~67% in the cold condition ($10^{\circ}C$). The breathability of the outer garment influenced the decrease in thermal insulation by wetting. The type of underwear fiber influenced the decrease in thermal insulation only when it was used with breathable outerwear. The vapor-permeable outerwear sample with polyester underwear (P_Perm) showed a larger decrease in insulation than that with wool (W_Perm). The evaporative resistance of the vapor-permeable ensemble showed no effect of underwear in the warm condition ($34^{\circ}C$), but polyester underwear showed lower evaporative resistance than wool in the cold condition ($10^{\circ}C$). The vapor-impermeable ensemble showed no difference in evaporative resistance between polyester underwear and wool underwear in both conditions. Future research should consider various clothing ensemble combinations and environmental conditions and evaluate wear comfort by using human subjects.

변압기 층간 절연지의 열열화 특성 평가에 관한 연구 (The Study on Characteristics for Thermal Aging of the Layer Insulation in Transformers)

  • 이병성;송일근;김동명;박동배;한상옥
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.406-409
    • /
    • 2002
  • The primary insulation system used in an oil-filled transformer is Kraft paper, wood, porcelain and, of course, oil. Modern transformers use paper that is chemically treated to improve its tensile strength properties and resistance to aging caused by immersion in oil. These insulation papers are mainly aged to thermal stress. Over the course of the insulation paper and oil's life it is exposed to high temperatures, oxygen and water. Its interaction with the steel of the tank and core plus the copper and aluminium of the windings will eventually cause the chemical properties of the oil to decay. High temperature have an effect on mechanical strength of cellulous paper using the layer insulation. We made two aging cell in which thermal aging tests of insulation papers and mineral oil are conducted. It is measured dielectric strength, number of acid, moisture, etc. of insulation paper and oil aged in the aging cells.

  • PDF

가속된 열적 스트레스에 의한 PAI / Nano Silica 하이브리드 코일의 절연수명 추정 (Estimation of Insulation Life of PAI/Nano Silica Hybrid Coil by Accelerated Thermal Stress)

  • 박재준
    • 전기학회논문지
    • /
    • 제68권1호
    • /
    • pp.52-60
    • /
    • 2019
  • In this paper, four types of insulation coils were fabricated by adding various kinds of glycols to improve the flexibility and adhesion of insulating coils in varnish dispersed with PAI / Nano Silica_15wt%. The applied voltage and frequency were 1.5 kV / 20 kHz for accelerated life evaluation. Through the 6th temperature stress level, the cause of the insulation breakdown of the coil was ignored and only the breakdown time was measured. The Arrhenius model was chosen based on the theoretical relationship between chemical reaction rate and temperature for estimating the insulation life of the coil due to accelerated thermal stress. Three types of distributions (Weibull, Lognormal, Exponential) were selected as the relationship between thermal stress model and distribution. The average insulation lifetime was estimated under the temperature stress of four types of insulation coils through the relationship between one kind of model and three kinds of distributions.