• Title/Summary/Keyword: thermal initiation

Search Result 147, Processing Time 0.028 seconds

Cracking Behavior Under Contact Stress in Densely Coated Porous Engineering Ceramics (치밀층으로 코팅된 다공성 엔지니어링 세라믹스에서의 접촉응력에 의한 균열 거동)

  • Kim, Sang-Kyum;Kim, Tae-Woo;Kim, Do-Kyung;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.554-560
    • /
    • 2005
  • The engineering ceramic needs the properties of high strength, hardness, corrosion-resistance and heat-resistance in order to withstand thermal shock or applied nonuniform stresses without failure. The densely coated porous ceramics can be used for machine component, electromagnetic component, bio-system component and energy-system component by their high-performances from superior coating properties and light-weight characteristics due to the structure including pore by itself. In this study we controlled the porosity of silica and alumina, $8.2\~25.4\%$ and $23.4\~36.0\%$, respectively, by the control of sintering temperature and starting powder size. We made bilayer structures, consisting of a transparent glass coating layer bonded to a thick substrate of different porous ceramics by a thin layer of epoxy adhesive, facilitated observations of crack initiation and propagation. The elastic modulus mismatch could be controlled using different porous ceramics as the substrate layer. Then we applied 150 N force using WC sphere with a radius of 3.18 mm by Hertzian indentation. As a result, the crack initiation in the coating layer was delayed at lower porosity in the substrate layer, and the damage in the coating layer was relatively smaller at the bilayer structure coated on higher elastic substrate.

Study on Explosion Behavior of Air-born Rice Bran Dusts according to Ignition Energy (점화에너지 변화에 따른 쌀겨분진의 폭발 거동에 관한 연구)

  • 김정환;김현우;현성호;백동현
    • Fire Science and Engineering
    • /
    • v.13 no.2
    • /
    • pp.26-32
    • /
    • 1999
  • We had investigated combustion pro야$\pi$ies of rice bran dusts. Decomposition of rice bran d dusts with temperature were investigated using DSC and the weight loss according to t temperature using TGA in order to find the thermal hazard of rice bran dusts, and the p properties of dust explosion in variation of their dust with the same particle size. Using H Hartman's dust explosion apparatus which estimate dust explosion by electric ignition after m making dust disperse by compressed air, dust explosion experiments have been conducted by v varying concen$\sigma$ation and size of rice br뻐 dust. According to the results for thermodynamic stability of rice bran dust, there are little change of initiation temperature of heat generation 때d heating value for used particle size. But i initiation temperature of heat generation decreased with high heating rate whereas d decomposition heat increased with particle size. Also, the explosion pressure was increased as t the ignition energy increased and average maximum explosion pressure was 13.5 kgv'cnt for 5 BJ/60 mesh and 1.5 뼈Ie미 dust concentration.

  • PDF

Research Activities on Subsystem Technologies of PDE Propulsions (PDE 추진기관 부체계 기술 연구 동향)

  • Jin, Wan-Sung;Kim, Ji-Hoon;Hwang, Won-Sub;Kim, Jeong-Min;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.712-721
    • /
    • 2015
  • Pulse Detonation Engine (PDE) has been considered as a future propulsion system for broad range of operation and higher thermal efficiency. Various subsystem technologies have been studied for more than decade to improve the performance of the potential system. New valve systems has been developed for the stable operation at high frequency including inflow-driven valve, rotary valve and valveless system. To foster the detonation initiation with a little ignition energy, plasma ignition method and DDT (deflagration to detonation transition) acceleration method such as swept ramp mechanism have been studied. Fluidic nozzle system and other nozzle system are the ongoing research topics to maximize the propulsion performance of the PDE. Present paper introduces the state of the art of PDE subsystem technologies developed in recent years.

Analysis of Transient Performance of KALIMER-600 Reactor Pool by Changing the Elevation of Intermediate Heat Exchanger (중간 열교환기 높이 상승에 의한 KALIMER-600 원자로 풀 과도 성능 변화 분석)

  • Han, Ji-Woong;Eoh, Jae-Hyuk;Kim, Seong-O
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.991-998
    • /
    • 2010
  • The effect of increasing the elevation of an IHX (intermediate heat exchanger) on the transient performance of the KALIMER-600 reactor pool during the early phase of a loss of normal heat sink accident was investigated. Three reactors equipped with IHXs that were elevated to different heights were designed, and the thermal-hydraulic analyses were carried out for the steady and transient state by using the COMMIX-1AR/P code. In order to analyze the effects of the elevation of an IHX between reactors, various thermal-hydraulic properties such as mass flow rate, core peak temperature, RmfQ (ratio of mass flow over Q) and initiation time of decay heat removal via DHX (decay heat exchanger) were evaluated. It was found that with an increase in the IHX elevation, the circulation flow rate increases and a steep rise in the core peak temperature under the same coastdown flow condition is prevented without a delay in the initiation of the second stage of cooling. The available coastdown flow range in the reactor could be increased by increasing the elevation of the IHX.

Evaluation of Direct Vessel Injection Design With Pressurized Thermal Shock Analysis (가압 열충격해석에 의한 직접용기주입 설계의 평가)

  • Cha, Jong-Hee;Jun, Hyung-Gil
    • Nuclear Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.86-97
    • /
    • 1992
  • The purpose of this paper is to evaluate the direct vessel injection design from a pressurized thermal shock(PTS) viewpoint for the Combustion Engineering System 80+ A break of the main steam line from zero power and a 0.05 ft$^2$small break loss-of-coolant accident (LOCA) from full power were selected as the potential PTS events. In order to investigate the stratification effects in the reactor downcomer region, the fluid mixing analysis was performed using the COMMIX-IB code for steam line break and using the REMIX code for 0.05 ft$^2$small break LOCA. The stress distributions within the reactor vessel walls experiencing the pressure and the temperature transients were calculated using the OCA-P code for both events. The results of the analysis showed that a small break LOCA without decay heat presented the greatest challenge to the vessel, however, there is no crack initiation through end-of-life of the vessel with consideration of decay heat.

  • PDF

Investigation of the Thermo-mechanical Crack Initiation of the Gas Turbine Casing Using Finite Element Analysis (유한요소해석을 이용한 가스터빈 케이싱 열피로 균열발생 해석)

  • Kang, M.S.;Yun, W.N.;Kim, J.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.52-58
    • /
    • 2009
  • A gas turbine consists of an upstream compressor and a downstream turbine with a combustion chamber, and also the compressor and the turbine are generally coupled using a single shaft. Many casing bolts are used to assemble two horizontally separated casings, the gas turbine casing and the compressor casing, in both of axial and vertical directions. Because drilled holes for casing bolts in vertical direction are often too close to drilled holes for casing bolts in axial direction, one can observe cracks in the area frequently during operations of a gas turbine. In this study of the root cause analysis for the cracking initiating from the drilled holes of the casings of a gas turbine, the finite element analysis(FEA) was applied to evaluate the thermal and mechanical characteristics of the casings. By applying the field operation data recorded from combined cycle power plants for FEA, thermal and thermo-mechanical characteristics of a gas turbine are analyzed. The crack is initiated at the geometrical weak point, but it is found that the maximum stress is relieved when the same type of cracks is introduced on purpose during FEA. So, it is verified that the local fracture could be delayed by machining the same type of defects near the hole for casing flange bolts of the gas turbine, where the crack is initiated.

  • PDF

A Study on Effects of Hydrogen Addition in Methane-Air Diffusion Flame (메탄-공기 확산화염에서 수소 첨가 효과에 관한 연구)

  • Park, June-Sung;Kim, Jeong-Soo;Kim, Sung-Cho;Keel, Sang-In;Yun, Jin-Han;Kim, Woo-Hyun;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.384-391
    • /
    • 2007
  • Hydrogen-blending effects in flame structure and NO emission behavior are numerically studied with detailed chemistry in methane-air counterflow diffusion flames. The composition of fuel is systematically changed from pure methane to the blending fuel of methane-hydrogen through $H_2$ molar addition up to 30%. Flame structure, which can be described representatively as a fuel consumption layer and a $H_2$-CO consumption layer, is shown to be changed considerably in hydrogen-blending methane flames, compared to pure methane flames. The differences are displayed through maximum flame temperature, the overlap of fuel and oxygen, and the behaviors of the production rates of major species. Hydrogen-blending into hydrocarbon fuel can be a promising technology to reduce both the CO and $CO_2$ emissions supposing that NOx emission should be reduced through some technologies in industrial burners. These drastic changes of flame structure affect NO emission behavior considerably. The changes of thermal NO and prompt NO are also provided according to hydrogen-blending. Importantly contributing reaction steps to prompt NO are addressed in pure methane and hydrogen-blending methane flames.

The Effect of Insulating Material on WLCSP Reliability with Various Solder Ball Layout (솔더볼 배치에 따른 절연층 재료가 WLCSP 신뢰성에 미치는 영향)

  • Kim, Jong-Hoon;Yang, Seung-Taek;Suh, Min-Suk;Chung, Qwan-Ho;Hong, Joon-Ki;Byun, Kwang-Yoo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2006
  • A major failure mode for wafer level chip size package (WLCSP) is thermo-mechanical fatigue of solder joints. The mechanical strains and stresses generated by the coefficient of thermal expansion (CTE) mismatch between the die and printed circuit board (PCB) are usually the driving force for fatigue crack initiation and propagation to failure. In a WLCSP process peripheral or central bond pads from the die are redistributed into an area away using an insulating polymer layer and a redistribution metal layer, and the insulating polymer layer affects solder joints reliability by absorption of stresses generated by CTE mismatch. In this study, several insulating polymer materials were applied to WLCSP to investigate the effect of insulating material. It was found that the effect of property of insulating material on WLCSP reliability was altered with a solder ball layout of package.

  • PDF

Synthesis and Latent Characteristics of Thermal Cationic Latent Catalysts by Change of Substituent (치환기 변화에 따른 열잠재성 양이온 촉매의 합성과 잠재특성 연구)

  • Park, Soo-Jin;Heo, Gun-Young;Lee, Jae-Rock;Shim, Sang-Yeon;Suh, Dong-Hack
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.558-567
    • /
    • 2001
  • The syntheses of thermal latent catalysts have been carried out by modifying the substituent of pyrazinium salts. The thermal latent properties and cure behaviors of difunctional epoxy resin (diglycidylether of bisphenol-A, DGEBA) with 1 wt% of catalyst as an initiator were investigated by dynamic DSC method. As a result, the synthesized catalysts showed the good latent thermal properties in epoxy system. With increasing the basicity of substituted catalyst, the cure temperature and activation energy of epoxy system were increased, whereas the activity was decreased. This was probably due to the fact that the activity and cure behavior were controlled by ring strain and basicity of substituent. Consequently, the catalyst activity modified by methyl group as an electron donor was decreased in increasing of basicity in an initiation step of epoxy cure system. This is due to a decreasing of stabilities of both leaving group of pyrazinium salts and benzyl cation. However, the catalyst activity modified by cyano group as an electron acceptor was increased in increasing the stability of benzyl cation resulting from organic effects and resonance.

  • PDF

Influence of Binder and Applied Pressure on Tensile Strength of $AC4C/Al_2O_3$ Composites Made by Squeeze Casting Process (용탕단조법에 의한 Alumina단섬유강화 AC4C기 복합재료의 인장강도에 미치는 점결제 및 가압력의 영향)

  • Yeo, In-Dong;Lee, Chi-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.15 no.2
    • /
    • pp.138-145
    • /
    • 1995
  • The mechanical properties of $Al/Al_2O_3$ composites have been investigated in relation with manufacturing factors such as applied pressure of casting and binder amount of preform. It was found that tensile strength increases with an increase of applied pressure, but decreases with binder amount. Increase of tensile strength is attributable to refinement of microstructure, improvement of intefacial bonding between $Al_2O_3$ short fiber and matrix, decrease of porosity in the matrix. Due to the high thermal stability of alumina short fiber, tensile strength of composites at $150^{\circ}C$ was superior to matrix alloy at room temperature. To evaluate the strength of composites, modified Kelly-Tyson's equation was introduced. Manufacturing factor M was obtained calculating from experimental data. M values were increased with applied pressure, but decreased with binder amount. The initiation of microcrack appeared to be at interface and reinforcement colony. Amount of micro-dimple was increased with applied pressure, and interfacial debonding phenomenon was remarkable with an increase of binder amount.

  • PDF