• Title/Summary/Keyword: thermal imaging

Search Result 619, Processing Time 0.031 seconds

Composite components damage tracking and dynamic structural behaviour with AI algorithm

  • Chen, Z.Y.;Peng, Sheng-Hsiang;Meng, Yahui;Wang, Ruei-Yuan;Fu, Qiuli;Chen, Timothy
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.151-159
    • /
    • 2022
  • This study discusses a hypothetical method for tracking the propagation damage of Carbon Reinforced Fiber Plastic (CRFP) components underneath vibration fatigue. The High Cycle Fatigue (HCF) behavior of composite materials was generally not as severe as this of admixture alloys. Each fissure initiation in metal alloys may quickly lead to the opposite. The HCF behavior of composite materials is usually an extended state of continuous degradation between resin and fibers. The increase is that any layer-to-layer contact conditions during delamination opening will cause a dynamic complex response, which may be non-linear and dependent on temperature. Usually resulted from major deformations, it could be properly surveyed by a non-contact investigation system. Here, this article discusses the scanning laser application of that vibrometer to track the propagation damage of CRFP components underneath fatigue vibration loading. Thus, the study purpose is to demonstrate that the investigation method can implement systematically a series of hypothetical means and dynamic characteristics. The application of the relaxation method based on numerical simulation in the Artificial Intelligence (AI) Evolved Bat (EB) strategy to reduce the dynamic response is proved by numerical simulation. Thermal imaging cameras are also measurement parts of the chain and provide information in qualitative about the temperature location of the evolution and hot spots of damage.

Development of a novel reconstruction method for two-phase flow CT with improved simulated annealing algorithm

  • Yan, Mingfei;Hu, Huasi;Hu, Guang;Liu, Bin;He, Chao;Yi, Qiang
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1304-1310
    • /
    • 2021
  • Two-phase flow, especially gas-liquid two-phase flow, has a wide application in industrial field. The diagnosis of two-phase flow parameters, which directly determine the flow and heat transfer characteristics, plays an important role in providing the design reference and ensuring the security of online operation of two-phase flow system. Computer tomography (CT) is a good way to diagnose such parameters with imaging method. This paper has proposed a novel image reconstruction method for thermal neutron CT of two-phase flow with improved simulated annealing (ISA) algorithm, which makes full use of the prior information of two-phase flow and the advantage of stochastic searching algorithm. The reconstruction results demonstrate that its reconstruction accuracy is much higher than that of the reconstruction algorithm based on weighted total difference minimization with soft-threshold filtering (WTDM-STF). The proposed method can also be applied to other types of two-phase flow CT modalities (such as X(𝛄)-ray, capacitance, resistance and ultrasound).

Application of Korean Medicine Therapy to a Patient with Insomnia from Severe Hot Flashes: Case Report (심한 상열감으로 인한 불면을 호소하는 환자의 한의 치료 1례: 증례보고)

  • Bae, Jin-soo;Jang, Esther;Kim, Bo-sung;Ahn, Seon-ju;Kim, Kyeong-ok
    • Journal of Oriental Neuropsychiatry
    • /
    • v.33 no.1
    • /
    • pp.113-122
    • /
    • 2022
  • Objectives: To report the effect of Korean medicine on a patient with insomnia from severe hot flashes. Methods: The patient suffered from extreme hot flashes for months. Symptoms were so severe that the patient attempted suicide. After starting psychiatric medication, symptoms persisted and hospitalization began. During hospitalization, herbal medicine, acupuncture, and psychotherapy were conducted. For evaluating therapeutical effect, Digital Infrared Thermal Imaging was performed twice during the treatment process. It was divided into major facial area and back area. The facial area was divided into two small units to measure the difference in temperature between two points. The back area was measured in the same way. Results: The temperature difference between the two points decreased over time and the patient's subjective symptoms reduced. Conclusions: Korean medicine therapy can improve symptoms of patients with insomnia accompanied by hot flashes.

Prediction of the Vase Life of Cut Lily Flowers Using Thermography

  • Lee, Ja Hee;Choi, So Young;Park, Hye Min;Oh, Sang Im;Lee, Ae Kyung
    • Journal of People, Plants, and Environment
    • /
    • v.22 no.3
    • /
    • pp.233-239
    • /
    • 2019
  • This study was conducted in order to predict the vase life of cut lily 'Woori Tower' flowers using a non-destructive thermal imaging technique. It was found that the temperature of cut lily flowers was maintained at 20℃ and was slightly lower than the air temperature until they bloomed. On the 11th day, when flowers bloomed, the temperature of leaves and flowers was measured to be 18.75±0.38℃ and 19.23±0.32℃ respectively, and their difference with ambient temperature was over 3℃. The flower temperature increased slightly when the vase life of cut lily flowers ended, and the temperature difference between the air and leaf temperature (1.77℃) and between the air and flower temperature (1.39℃) got smaller. No visible aging symptom was observed, but it was found that the temperature had risen due to water losses and less functional stomata. The vase life of cut lily flowers can be predicted based on changes in temperature and it will be also possible to predict the potential quality and vase life of cut flowers before harvesting them in greenhouses.

Multimodal Image Fusion with Human Pose for Illumination-Robust Detection of Human Abnormal Behaviors (조명을 위한 인간 자세와 다중 모드 이미지 융합 - 인간의 이상 행동에 대한 강력한 탐지)

  • Cuong H. Tran;Seong G. Kong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.637-640
    • /
    • 2023
  • This paper presents multimodal image fusion with human pose for detecting abnormal human behaviors in low illumination conditions. Detecting human behaviors in low illumination conditions is challenging due to its limited visibility of the objects of interest in the scene. Multimodal image fusion simultaneously combines visual information in the visible spectrum and thermal radiation information in the long-wave infrared spectrum. We propose an abnormal event detection scheme based on the multimodal fused image and the human poses using the keypoints to characterize the action of the human body. Our method assumes that human behaviors are well correlated to body keypoints such as shoulders, elbows, wrists, hips. In detail, we extracted the human keypoint coordinates from human targets in multimodal fused videos. The coordinate values are used as inputs to train a multilayer perceptron network to classify human behaviors as normal or abnormal. Our experiment demonstrates a significant result on multimodal imaging dataset. The proposed model can capture the complex distribution pattern for both normal and abnormal behaviors.

Study on the interrelationship between the PWV and the temperature difference (맥파전달속도(PWV)와 말초체열분포(DITI)와의 관계 연구)

  • Lee, Yoon-Jae;Cho, Jung-Hoon;Lee, Chang-Hoon;Lee, Jin-Moo;Jang, Jun-Bock;Lee, Kyung-Sub
    • Journal of Oriental Medical Thermology
    • /
    • v.6 no.1
    • /
    • pp.23-31
    • /
    • 2008
  • Objective: The purpose of this study is to identify relationship between the PWV and the temperature difference. Methods: When it comes to senile patients who suffer from cold limbs, there is need to see whether or not the patient's low temperature of the limbs is do to arteriosclerosis. The Pulse Wave Velocity(PWV) is a non-invasive method measuring the artery's rigidness. And the Digital Infrared Thermal Imaging(D.I.T.I) is a non-invasive method to see the body's thermal change. Research on the interrelationship of the artery's rigidness and body's thermal distribution was done by using these two tests. The subjects of this research were patients between the age 40~65 who have done both the D.I.T.I and PWV in March 2005~ September 2005. They had to have no history of diabetes, coronary illnesses or cerebrovascular diseases which are diseases that can effect the outcome of the PVW, nor history of spondylopathy or dermatosis which can effect the outcome of the D.I.T.I. Results: The results were as follows. 1. There was a significant interrelationship between the right wrist-ankle PWV and the temperature difference of the right wrist-palm. 2. There was a significant interrelationship between the left wrist-ankle PWV and the temperature difference of the left wrist-palm. 3. There was no significant interrelationship between the right wrist-ankle PWV and the temperature difference of the right thigh-dorsum of foot. 4. There was no significant interrelationship between the left wrist-ankle PWV and the temperature difference of the left thigh-dorsum of foot. 5. The right ABI showed no significant interrelationship between the temperature difference of the right wrist-palm and the right thigh-dorsum of foot. 6. The left ABI showed no significant interrelationship between the temperature difference of the left wrist-palm and the left thigh-dorsum of foot. Conclusion: The study shows that there was a significant interrelationship between wrist-ankle PWV and the temperature difference of wrist-palm.

  • PDF

Numerical Analysis of Conjugate Heat Transfer for Various Ice-Ball Shapes (다양한 아이스 볼 형상에 대한 복합열전달의 수치해석)

  • Park, Seo Won;Kim, Myoung Soo;Jeon, Byoung Jin;Choi, Hyoung Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.605-612
    • /
    • 2016
  • In this study, numerical simulations were conducted for conjugate heat transfer around ice balls in an encapsulated ice thermal storage system. Four shapes of ice balls were modeled; the default one was a sphere, and the other three shapes were designed to enhance convective heat transfer through the ball surface. The flow around the ball was laminar, for which the Reynolds number was 300, and both forced and natural convections inside and outside the balls were considered. The simulations revealed that the magnitude of convective heat transfer for the different shapes decreased in the following order: bone, dimple, hole, and sphere. For the entire simulation, the maximum difference in the average temperatures of water inside the capsules was found to be $0.9^{\circ}C$. Therefore, it can be said that the effect of ice-ball shape on the performance of the ice thermal storage system is significant, considering that more than 0.3 million balls are used in this system.

Thermal Conductivity Effect of Heat Storage Layer using Porous Feldspar Powder (다공질 장석으로 제조한 축열층의 열전도 특성)

  • Kim, Sung-Wook;Go, Daehong;Choi, Eun-Kyeong;Kim, Sung-Hwan;Kim, Tae-Hyoung;Lee, Kyu-Hwan;Cho, Jinwoo
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.159-170
    • /
    • 2017
  • The temporal and spatial temperature distribution of the heat storage mortar made of porous feldspar was measured and the thermal properties and electricity consumption were analyzed. For the experiment, two real size chambers (control model and test model) with hot water pipes were constructed. Two large scale models with hot water pipes were constructed. The surface temperature change of the heat storage layer was remotely monitored during the heating and cooling process using infrared thermal imaging camera and temperature sensor. The temperature increased from $20^{\circ}C$ to $30^{\circ}C$ under the heating condition. The temperature of the heat storage layer of the test model was $2.0-3.5^{\circ}C$ higher than the control model and the time to reach the target temperature was shortened. As the distance from the hot water pipe increased, the temperature gap increased from $4.0^{\circ}C$ to $4.8^{\circ}C$. The power consumed until the surface temperature of the heat storage layer reached $30^{\circ}C$ was 2.2 times that of the control model. From the heating experiment, the stepwise temperature and electricity consumption were calculated, and the electricity consumption of the heat storage layer of the test model was reduced by 66%. In the cooling experiment, the surface temperature of the heat storage layer of the test model was maintained $2^{\circ}C$ higher than that of the control model. The heat storage effect of the porous feldspar mortar was confirmed by the temperature experiment. With considering that the time to reheat the heat storage layer is extended, the energy efficiency will be increased.

Measurement of ROI Temperature in Herniation of Intervertebral Disc Patients Using DITI (디지털 적외선 체열진단기를 이용한 추간판탈출증 환자의 ROI 온도측정)

  • Park, Jeong Kyu;Park, Jong Sam;Kwon, Soon Mu
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.4
    • /
    • pp.273-278
    • /
    • 2017
  • Among 45 patients of herniation of intervertebral disc with $L_4$ to $L_5$ herniation, who underwent infrared thermography, the number of female was larger than male and the age of 50s was highest. From the results measured from the distribution table, we have confirmed that there was no significant difference depending on sex and age (p> 0.05). The region of the highest ROI temperature for patients with $L_4-L_5$ intervertebral disc prolapse was the back of the posterior right tibia, and followed by the back of the left shin bone-below the front right knee-below the front left knee. There was a significant difference depending on the measured site. The average ROI temperature for patients was $30.30{\pm}0.50$ whereas that for normal persons was $31.20{\pm}0.58$, yielding the temperature difference of $0.66{\pm}0.59$ between the two groups. The ROI of patients was lower than $31.20{\pm}0.58$ (p <0.05) because the significance of the sample, which has been obtained from the results of a sample t-test, was less than 0.05 (p <0.05). From further researches, it may necessary to develope the methodology for correcting data regarding thermal environment and, in addition, to develope a new thermal index based on it. Therefore, we can confirm that pre-treatment for infrared thermography is very important in order to minimize the procedure for correcting data. It is required that radiologists who inspect disc herniations should carefully observe and consider the patients during their measurements.

RESEARCH ON SPACE ENVIRONMENTAL EFFECT OF ORGANIC COMPOSITE MATERIALS FOR THERMAL MANAGEMENT OF SATELLITES USING MC-50 CYCLOTRON (MC-50 싸이클로트론을 이용한 위성용 열조절 유기복합재료의 우주환경 영향 연구)

  • Kim, Dae-Weon;Kim, Dong-Iel;Huh, Yong-Hak;Yang, Tae-Keun;Lee, Ho-Young;Kim, Yong-Hyup
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.441-450
    • /
    • 2005
  • The organic material is one of the most popular material for the satellites and the spacecrafts in order to perform the thermal management, and to protect direct exposure from the space environment. The present paper observes material property changes of organic material under the space environment by using ground facilities. One of the representative organic thermal management material of satellites, 2 mil ITO(Indium Tin Oxide) coated aluminized KAPTON was selected for experiments. In order to investigate the single parametric effect of protons in space environment, MC-50 cyclotron system in KIRAMS(Korea Institute of Radiological and Medical Science) was utilized for the ion beam irradiation of protons and ion beam dose was set to the Very Large August 1972 EVENT model, the highest protons occurrence near the earth orbit in history. The energy of ion beam is fixed to 30MeV(mesa electron volt), observed average energy, and the equivalent irradiance time conditions were set to 1-year, 3-year, 5-year and 10-year exposure in space. The procedure of analyses includes the measurement of the ultimate tensile strength for the assessment of quantitative degradation in material properties, and the imaging analyses of crystalline transformation and damages on the exposed surface by FE-SEM(Field Emission Scanning Electron Spectroscopy) etc.