• 제목/요약/키워드: thermal history

검색결과 283건 처리시간 0.033초

개량형 2중버블시트 양생막에 의한 온도이력 특성 (Temperature History of the Concrete Cured by the Curing Sheet made with Double Layered Bubble Sheet)

  • 김준호;손호정;손명식;경영혁;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.81-83
    • /
    • 2012
  • This paper is to compare the temperature history of the concrete using existing curing sheet and developed curing sheet made with double layered bubble sheet subjected to clod climate. Field application was conducted. According to results, application of developed curing sheet makes the temperature of curing house and concrete higher than existing curing sheet by about 3℃. This is due to the lower thermal conductivity of developed curing sheet.

  • PDF

폴리우레탄 폼을 도포한 갱폼사용에 따른 콘크리트 온도이력특성 (A study on thermal properties of concrete using gang form coated with polyurethane)

  • 남경용;원준연;강인선;전판근;이영도;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 1부
    • /
    • pp.11-12
    • /
    • 2011
  • This study examine Effect of Change of Compressive Strength of Concrete Members with Insulating Gang form on Temperature History of Concrete Positions. Test show, insulating gang forms differences and gang forms have 10℃ on peak point temperature of surface and Center if temperature history have 24Mpa by change of compressive strength. In addition, there have 14℃(16℃) on peak point temperature of surface and Center if temperature history have 40(60)Mpa. Therefore, insulating gang forms have an effect insulating performance.

  • PDF

온도응력 측정용 시험장치의 개발 (Development of Thermal Stress Measuring System)

  • 전상은;김국한;김진근
    • 콘크리트학회논문집
    • /
    • 제13권3호
    • /
    • pp.228-236
    • /
    • 2001
  • 매스콘크리트 구조물에서 발생하는 온도응력을 예측하기 위해 많은 연구가 해석적인 방법과 실험적인 방법을 통해 수행되어왔다. 그러나 이러한 해석적인 방법과 실험적인 방법으로 온도응력을 예측하는 것은 한계가 있다. 해석적인 방법은 콘크리트의 탄성계수, 열팽창계수와 같은 물성치를 정확히 알아야 한다. 그리고 실험적인 방법은 대부분이 실제 구조물이나 모형구조물을 통하여 직접 온도응력을 측정한다. 그러나 이와 같은 방법은 경제적인 문제뿐만 아니라 현장의 불확실한 조건들을 감수해야 한다. 본 연구에서는 온도응력을 실내에서 직접적으로 측정할 수 있는 시험장치를 개발하였다. 개발된 온도응력 시험장치는 콘크리트와 다른 열팽창계수를 갖는 재료를 이용하여 실제 구조물에서 발생할 수 있는 콘크리트의 내/외부 구속에 의한 온도응력의 변화를 구현할 수 있으며, 이를 정량적으로 예측할 수 있다. 실험은 해석을 통해 얻은 온도이력을 구현할 수 있는 항온항습조에서 수행하였고, 온도응력은 장비에 부착된 변형률게이지를 통해 얻은 변형률을 이용하여 계산하였다. 개발된 장비의 검증을 위해 매립게이지를 이용하여 온도응력을 측정하는 실험을 동시에 수행하였고, 이 결과에 의하면 개발된 시험장치는 불확실한 콘크리트의 초기재령 물성치를 고려하여 보다 정확하게 온도응력을측정할 수 있으며, 검증실험 결과에 의해 그 객관성과 타당성을 입증할 수 있었다.

The Effect of Welding Residual Stress on Whole Structure with T-Joint RHS

  • Rajesh S. R.;Bang H. S.;Kim H.
    • International Journal of Korean Welding Society
    • /
    • 제5권1호
    • /
    • pp.60-65
    • /
    • 2005
  • In the field of welding the mechanical behavior of a welded structure under consideration may be predicted via heat transfer and welding residual stress analysis. Usually such numerical analyses are limited to small regular mesh models or test specimens. Nevertheless, there is very few strength assessment of the whole structure that includes the effect of welded residual stress. The present work is based on the specialized finite element codes for the calculation of nonlinear heat transfer details and residual stress including the external load on the welded RHS (Rectangular Hollow Section) T-joint connections of the whole structure. First the thermal history of the combined fillet and butt-welded T-joint equal width cold-formed RHS are calculated using nonlinear finite element analysis (FEA) considering the quarter model of the joint. Then using this thermal history the residual stress around the joints has been evaluated. To validity the FEA result, the calculated residual stresses were compared with the available experimental results. The residual stress obtained from the quarter model is mapped to the full model and then to the whole structure model using FEM codes. The results from the FEM codes were exported to the commercial package for visualization and further analysis applying loads and boundary conditions on the whole structure. The residual stress redistribution along with the external applied load is examined computationally.

  • PDF

N-tetradecane/Water Emulsion as a Low-cost Phase Change Material for Efficient Packaging and Shipping of Vaccines

  • Dao, Van-Duong;Choi, Ho-Suk
    • 청정기술
    • /
    • 제23권3호
    • /
    • pp.325-330
    • /
    • 2017
  • This study presents the preparation of n-tetradecane-in-water emulsions with different weight ratios of n-tetradecane and water, and their potential application in packaging and shipping vaccines. The size and distribution of the n-tetradecane droplets are characterized using optical microscopy and light scattering methods, respectively. The thermal properties of the emulsions are determined using the T-history method. In the results, the emulsions, which are comprised of 17 ~ 30 wt% oil, 3 wt% surfactant, and 67 ~ 80 wt% water, are stable and have droplet sizes in the range of 100 to 800 nm. The thermal properties demonstrate that subcooling is prevented through increasing the droplet size. The results indicate that the n-tetradecane/water emulsions containing 25 ~ 35 wt% n-tetradecane, with a melting point of $2{\sim}8^{\circ}C$ and a latent heat of $227.0{\sim}250.8kJ\;kg^{-1}$, are good candidate materials for packaging and shipping vaccines.

열가소성 폴리머 필름의 트라이볼로지 특성에 대한 온도의 영향 (Effects of Temperature on the Tribological Characteristics of Thermoplastic Polymer Film)

  • 김광설;허정철;김경웅
    • Tribology and Lubricants
    • /
    • 제25권4호
    • /
    • pp.207-216
    • /
    • 2009
  • Friction tests were carried out in order to investigate the effects of temperature on the friction and wear behaviors between a PMMA film and a fused silica lens using a microtribometer. The friction forces on the PMMA film were measured under atmospheric condition as the temperature of the film was increased from 300 K to 443 K. The contact area between the film and the lens was observed. The tribological characteristics of the film were significantly changed as the temperature increased. The changes were discussed with the change of the film state from glassy to viscous flow. In addition, the results showed that the friction behavior can be varied with the thermal history of the PMMA film. Residual solvent in the PMMA film could emerge to the PMMA surface due to an additional heating and the solvent on the film surface decreased the friction force.

Effect of Thermal History on Pitting Corrosion of High Nitrogen and Low Molybdenum Stainless Steels

  • Kim, Kwangsik;Chang, Hyunyoung;Kim, Youngsik
    • Corrosion Science and Technology
    • /
    • 제2권2호
    • /
    • pp.75-81
    • /
    • 2003
  • Chromium, molybdenum. and nitrogen are very important alloying elements in stainless steels and its effect was approved in pitting resistance equivalent (PRE) equations and many experimental results. However, Cr can improve the corrosion resistance, but facilitate the formation of sigma phase. Also. Mo has the same effect in stainless steels. If Cr and Mo are added at high amount to increase the corrosion resistance of stainless steel, corrosion resistance in annealed alloys can be improved, but in case of welding or aging heat treatment. its resistance will be drastically decreased. In this work, increasing Cr and N contents but decreasing Mo than the commercial alloys made the experimental alloys. Typical alloys are 25Cr-4.5Mo-0.43N alloy, 27Cr-4.7Mo-0.4N alloy, 27Cr-5.3Mo-0.25N alloy, 32Cr-2.6Mo-0.36N alloy. After annealing and aging heat treatment, microstructures, anodic polarization test, and pitting corrosion test were performed. Annealed alloys showed $100^{\circ}C$ of CPT and aged alloys showed the different tendency depending upon Cr and Mo contents(SFI)

Creep analysis of plates made of functionally graded Al-SiC material subjected to thermomechanical loading

  • Majid Amiri;Abbas Loghman;Mohammad Arefi
    • Advances in concrete construction
    • /
    • 제15권2호
    • /
    • pp.115-126
    • /
    • 2023
  • This paper investigates creep analysis of a plate made of Al-SiC functionally graded material using Mendelson's method of successive elastic solution. All mechanical and thermal material properties, except Poisson's ratio, are assumed to be variable along the thickness direction based on the volume fraction of reinforcement and thickness. First, the basic relations of the plate are derived using the Love-Kirchhoff plate theory. The solution of governing equations yields an elastic solution to start creep analysis. The creep behavior is demonstrated through Norton's equation based on Pandey's experimental results extracted for Al-SiC functionally graded material. A linear variation is assumed for temperature distribution along the thickness direction. The creep strain, as well as the thermal strain, are included in the governing equations derived from classical plate theory for mechanical strain. A successive elastic solution based on Mendelson's method is employed to derive the history of stresses, strains, and displacements over a long time. History of stresses and deformations are obtained over a long time to predict damage to the plate because of various loadings, and material composition along the thickness and planar directions.

열복사에 의한 수직연료면의 점화현상 해석 (Ignition of a Vertically Positioned Fuel Plate by Thermal Radiation)

  • 한조영;백승욱
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2353-2364
    • /
    • 1995
  • The ignition phenomena of a solid fuel plate of polymethyl-methacrylate(PMMA), which is vertically positioned and exposed to a thermal radiation source, is numerically studied here. A two-dimensional transient model includes such various aspects as thermal decomposition of PMMA, gas phase radiation absorption, gas phase chemical reaction and air entrainment by natural convection. Whereas the previous studies considers the problem approximately in a one-dimensional form by neglecting the natural convection, the present model takes account of the two-dimensional effect of radiation and air entrainment. The inert heating of the solid fuel is also taken into consideration. Radiative heat transfer is incorporated by th Discrete Ordinates Method(DOM) with the absorption coefficient evaluated using gas species concentration. The thermal history of the solid fuel plate shows a good agreement compared with experimental results. Despite of induced natural convective flow that induces heat loss from the fuel surface, the locally absorbed radiant energy, which is converted to the internal energy, is found to play an important role in the onset of gas phase ignition. The ignition is considered to occur when the rate of variation of gas phase reaction rate reaches its maximum value. Once the ignition takes place, the flame propagates downward.