• Title/Summary/Keyword: thermal groundwater

Search Result 158, Processing Time 0.026 seconds

Simulation of Ice Ring Formation around Cryogenic Underground Storage Cavern using Hydro-Thermal Coupling Method (극저온 지하저장고 주변 ice ring 생성 모델링을 위한 열-수리 해석)

  • Jung Yong-Bok;Park Chan;Chung So-Keul;Jeong Woo-Cheol;Kim Ho-Yeong
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.241-250
    • /
    • 2006
  • Ice ring formation, one of the core techniques in LNG storage in a lined rock cavern, is investigated through hydro-thermal coupled analysis. An ice ring acts as a secondary barrier in case of leakage of cryogenic liquid and as a primary barrier for groundwater intrusion into an LNG cavern. Therefore, the thickness and location of the ice ring are crucial factors for the safe operation of an LNG storage cavern, especially for maintaining the integrity of a primary barrier composed of concrete, PU foam, and steel membrane. Through numerical analyses, the position and thickness of the ice ring are estimated, and the temperature and groundwater level are compared with measured values. The temperature md groundwater level by numerical analyses show good agreement with the field measurements when temperature-dependent properties and phase change are taken into account. The schemes used in this paper can be applied for estimation of ice ring formation in designing a full-scale LNG cavern.

An Experimental Analysis of Effective Thermal Conductivity of Porous Materials Using Structural Models (구조모델을 이용한 다공성 매질의 유효열전도도 분석)

  • Cha, Jang-Hwan;Koo, Min-Ho;Keehm, Young-Seuk
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.91-98
    • /
    • 2010
  • The effective thermal conductivity of porous materials is usually determined by porosity, water content, and the conductivity of the matrix. In addition, it is also affected by the internal structure of the materials such as the size, arrangement, and connectivity of the matrix-forming grains. Based on the structural models for multi-phase materials, thermal conductivities of soils and sands measured with varying the water content were analyzed. Thermal conductivities of dry samples were likely to fall in the region between the Maxwell-Eucken model with air as the continuous phase and the matrix as the dispersed phase ($ME_{air}$) and the co-continuous (CC) model. However, water-saturated samples moved down to the region between the $ME_{wat}$ model and the series model. The predictive inconsistency of the structural models for dry and water-saturated samples may be caused by the increase of porosity for water-saturated samples, which leads to decrease of connectivity among the grains of matrix. In cases of variably saturated samples with a uniform grain size, the thermal conductivity showed progressive changes of the structural models from the $ME_{air}$ model to the $ME_{wat}$ model depending on the water content. Especially, an abrupt increase found in 0-20% of the water content, showing transition from the $ME_{air}$ model to the CC model, can be attributed to change of water from the dispersed to continuous phase. On the contrary, the undisturbed soil samples with various sizes of grains showed a gradual increase of conductivity during the transition from the $ME_{air}$ model to the CC model.

Investigation on the Leaching Potential of Water-Soluble Metals from Bottom Ashes in Coal-fired Power Plants (화력발전소 바닥재의 수용성 금속이온 용출가능성 조사)

  • Seo, Hyosik;Koh, Dong-Chan;Choi, Hanna
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.39-49
    • /
    • 2022
  • Bottom ash generated from thermal power plants is mainly disposed in landfills, from which metals may be leached by infiltrating water. To evaluate the effect of metals in leachate on soil and groundwater, we characterized bottom ash generated from burning cokes, bituminous coal, the mixture of bituminous coal and wood pellets, and charcoal powder. The bottom ash of charcoal powder had a relatively large particle size, and its wood texture was well-preserved from SEM observation. The bottom ash of charcoal powder and wood pellets had relatively high K concentration from total element analysis. The eluates of the bottom ash samples had appreciable concentrations of Ca, Al, Fe, SO4, and NO3, but they were not a significant throughout the batch test. Therefore, it is considered that there is low possibility of soil and groundwater contamination due to leaching of metal ions and anions from these bottom ash in landfills. To estimate the trend of various trace elements, long-term monitoring and additional analysis need to be performed while considering the site conditions, because they readily adsorb on soil and aquifer substances.

The Analysis of Geothermal Gradient at Icheon Hot Spa Area (이천 온천원보호지구의 지온경사 해석)

  • Lee, Chol-Woo;Moon, Sang-Ho
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.185-190
    • /
    • 2008
  • Nine wells have been developed for uses of thermal waters at the Icheon hot spa area. Drilling depths of those hot spring wells range from 166 to 294 m and their piezometric heads are located at about 50 m below the surface. Using the differences between the surface and bottom temperatures within all boreholes, we can simply estimate geothermal gradient in this area. Thus, we obtained the highest, lowest and average gradient values as $64^{\circ}C/km$ from SB-2 well, $45^{\circ}C/km$ from SB-1 well and approximately $54.28^{\circ}C/km$, respectively. However, observing the MRD-2 well additionally drilled into the depth of 996 m, we found out that this study area has widely experienced the temperature disturbance due to thermal groundwater penetration through the fracture systems within the depth of 720 m. Unlikely this phenomenon, we can conclude that the groundwater flow below the depth of 720 m does not exist. Therefore, using only those temperature data below the 720 m depth, we can estimate reasonable geo-thermal gradient values as $33^{\circ}C/km$ in this study area. Pumping test shows that outflowing temperature is $36^{\circ}C$ corresponding to the temperature logging data at 720 m depth.

Numerical Simulations for Optimal Utilization of Geothermal Energy under Groundwater-bearing Conditions (지하수 부존지역에서 최적 지열에너지 활용방식 수치 모의)

  • Kim, Jin-Sung;Cha, Jang-Hwan;Song, Sung-Ho;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.487-499
    • /
    • 2014
  • While the vertical open type of heat exchanger is more effective in areas of abundant groundwater, and is becoming more widely used, the heat exchanger most commonly used in geothermal heating and cooling systems in Korea is the vertical closed loop type. In this study, we performed numerical simulations of the optimal utilization of geothermal energy based on the hydrogeological and thermal properties to evaluate the efficiency of the vertical open type in areas of abundant groundwater supply. The first simulation indicated that the vertical open type using groundwater directly is more efficient than the vertical closed loop type in areas of abundant groundwater. Furthermore, a doublet system with separated injection and extraction wells was more efficient because the temperature difference (${\Delta}$) between the injection and extraction water generated by heat exchange with the ground is large. In the second simulation, we performed additional numerical simulations of the optimal utilization of geothermal energy that incorporated heat transfer, distance, flow rate, and groundwater hydraulic gradient targeting a single well, SCW (standing column well), and doublet. We present a flow diagram that can be used to select the optimal type of heat exchanger based on these simulation results. The results of this study indicate that it is necessary to examine the adequacy of the geothermal energy utilization system based on the hydrogeological and thermal properties of the area concerned, and also on a review of the COP (coefficient of performance) of the geothermal heating and cooling system.

Temperature monitoring and seasonal borehole heat exchange rate characteristics of a geothermal heat pump system (지열 히트펌프 시스템의 계절별 지중 열교환 특성 및 지반내 온도 변화)

  • Shim, Byoung-Ohan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.452-455
    • /
    • 2007
  • The geothermal heat pump system is designed for cooling and heating for three stories building (2,435 $m^2$) includes total 79 heat pumps. Therefore, the monitoring system is installed for each floor and the data is automatically transmitted to the monitoring system. Heat exchange rate and temperature of a geothermal heat pump system have been monitored for a long period. The seasonal operation of geothermal heat pump shows the different shape of heat exchange rate for cooling and heating. Ground water flow can influence on heat exchange rate and thermal storage of the system. In order to define the hydraulic characteristics and groundwater temperature variation, the relationships among air temperatures, groundwater temperatures, water table, and precipitation are analysed.

  • PDF

Measuring thermal conductivity and water suction for variably saturated bentonite

  • Yoon, Seok;Kim, Geon-Young
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.1041-1048
    • /
    • 2021
  • An engineered barrier system (EBS) for the disposal of high-level radioactive waste (HLW) is composed of a disposal canister with spent fuel, a buffer material, a gap-filling material, and a backfill material. As the buffer is located in the empty space between the disposal canisters and the surrounding rock mass, it prevents the inflow of groundwater and retards the spill of radionuclides from the disposal canister. Due to the fact that the buffer gradually becomes saturated over a long time period, it is especially important to investigate its thermal-hydro-mechanical-chemical (THMC) properties considering variations of saturated condition. Therefore, this paper suggests a new method of measuring thermal conductivity and water suction for single compacted bentonite at various levels of saturation. This paper also highlights a convenient method of saturating compacted bentonite. The proposed method was verified with a previous method by comparing thermal conductivity and water suction with respect to water content. The relative error between the thermal conductivity and water suction values obtained through the proposed method and the previous method was determined as within 5% for compacted bentonite with a given water content.

Construction of Ground Effective Thermal Conductivity Database for Design of Closed-Loop Ground Heat Exchangers (밀폐형 지중열교환기 설계를 위한 지중 유효열전도도 데이터베이스 구축)

  • Choi, Jae-Ho;Sohn, Byong-Hu;Lim, Hyo-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.776-781
    • /
    • 2008
  • A ground heat exchanger in a GSHP system is an important unit that determines the thermal performance of a system and its initial cost. The Size and performance of this heat exchanger is highly dependent on the thermal properties. A proper design requires certain site-specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This paper is part of a research project aiming at constructing a database of these site-specific properties, especially ground effective thermal conductivity. The objective was to develop and evaluation method, and to provide this knowledge to design engineers. To achieve these goals, thermal response tests were conducted using a testing device at nearly 150 locations in Korea. The in-situ thermal response is the temperature development over time when a known heating load imposed, e.g. by circulating a heat carrier fluid through the test exchangers. The line-source model was then applied to the response test data because of its simplicity. From the data analysis, the range of ground effective thermal conductivity at various sites is $1.5{\sim}4.0\;W$/mK. The results also show that the ground effective thermal conductivity varies with grouting materials as well as regional geological conditions and groundwater flow.

  • PDF

A Study on the Thermal Characteristics of Jeju type Ground Heat Exchanger for Ground Source Heat Pump System applied to Jeju Island (제주도에 설치된 지열 열펌프 시스템용 제주형 지중열교환기의 열특성 연구)

  • Kim, Min-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.32-38
    • /
    • 2020
  • This study summarizes test methods and evaluation methods for examining the thermal characteristics of Jeju-type ground heat exchangers (GHXs) installed on Jeju Island, and analyzes the ground temperature and thermal characteristics of ground heat exchangers installed in various regions by using thermal response tests (TRT). Jeju Island is composed of volcanic rock layers, and the groundwater flow is well developed. A Jeju-type GHX can be installed up to 30 m from groundwater level after drilling a borehole. The ground heat exchanger has a structure in which several pipes are inserted into the borehole. In order to examine the characteristics of the Jeju-type GHX, tests were conducted on ground heat exchangers installed in four places on Jeju Island (Pyoseon, Jeju, Namwon, and Hallym). As a result of the analysis of the Jeju-type ground heat exchanger, the ground circulating water temperature stabilized according to the heat injection, depending on the installed location, and was formed within one to three hours. The ground heat exchanger capacity in Hallym was highest at 73.4 kW (cooling) and 82.8 kW (heating), and the Jeju-type calculation was lowest at 34.1 kW (cooling) and 23.3 kW (heating).

Effects of Soil Remediation Methods on the Biological Properties of Soils (오염토양 정화공법이 토양의 생물학적 특성에 미치는 영향)

  • Yi, Yongmin;Kim, Gukjin;Sung, Kijune
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.3
    • /
    • pp.73-81
    • /
    • 2013
  • Various remediation methods have been applied to clean soils contaminated with pollutants. They remove contaminants from the soils by utilizing physicochemical, biological, and thermal processes and can satisfy soil remediation standards within a limited time; however, they also have an effect on the biological functions of soils by changing soil properties. In this study, changes of the biological properties of soils before and after treatment with three frequently used remediation methods-soil washing, land farming, and thermal desorption-were monitored to investigate the effects of remediation methods on soil biological functions. Total microbial number and soil enzyme activities, germination rate and growth of Brassica juncea, biomass change of Eisenia andrei were examined the effects on soil microorganisms, plant, and soil organisms, respectively. After soil washing, the germination rate of Brassica juncea increased but the above-ground growth and total microbial number decreased. Dehydrogenase activity, germination rate and above-ground growth increased in both land farming and thermal desorption treated soil. Although the growth of Eisenia andrei in thermal desorption treated soil was higher than any other treatment, it was still lower than that in non-contaminated soil. These results show that the remediation processes used to clean contaminated soil also affect soil biological functions. To utilize the cleaned soil for healthy and more value-added purposes, soil improvement and process development are needed.