• Title/Summary/Keyword: thermal groundwater

Search Result 158, Processing Time 0.022 seconds

Biodegradation of Polynuclear Aromatic Hydrocarbons in soil using microorganisms under anaerobic conditions (혐기성 미생물에 의한 토양내 다핵성방향족화합물의 생물학적 분해)

  • An, Ik-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.89-91
    • /
    • 2000
  • Polynuclear aromatic hydrocarbon (PAH) compounds are highly carcinogenic chemicals and common groundwater contaminants that are observed to persist in soils. The adherence and slow release of PAHs in soil is an obstacle to remediation and complicates the assessment of cleanup standards and risks. Biological degradation of PAHs in soil has been an area of active research because biological treatment may be less costly than conventional pumping technologies or excavation and thermal treatment. Biological degradation also offers the advantage to transform PAHs into non-toxic products such as biomass and carbon dioxide. Ample evidence exists for aerobic biodegradation of PAHs and many bacteria capable of degrading PAHs have been isolated and characterized. However, the microbial degradation of PAHs in sediments is impaired due to the anaerobic conditions that result from the typically high oxygen demand of the organic material present in the soil, the low solubility of oxygen in water, and the slow mass transfer of oxygen from overlying water to the soil environment. For these reasons, anaerobic microbial degradation technologies could help alleviate sediment PAH contamination and offer significant advantages for cost-efficient in-situ treatment. But very little is known about the potential for anaerobic degradation of PAHs in field soils. The objectives of this research were to assess: (1) the potential for biodegradation of PAH in field aged soils under denitrification conditions, (2) to assess the potential for biodegradation of naphthalene in soil microcosms under denitrifying conditions, and (3) to assess for the existence of microorganisms in field sediments capable of degrading naphthalene via denitrification. Two kinds of soils were used in this research: Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS). Results presented in this seminar indicate possible degradation of PAHs in soil under denitrifying conditions. During the two months of anaerobic degradation, total PAH removal was modest probably due to both the low availability of the PAHs and competition with other more easily degradable sources of carbon in the sediments. For both Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS), PAH reduction was confined to 3- and 4-ring PAHs. Comparing PAH reductions during two months of aerobic and anaerobic biotreatment of MHS, it was found that extent of PAHreduction for anaerobic treatment was compatible with that for aerobic treatment. Interestingly, removal of PAHs from sediment particle classes (by size and density) followed similar trends for aerobic and anaerobic treatment of MHS. The majority of the PAHs removed during biotreatment came from the clay/silt fraction. In an earlier study it was shown that PAHs associated with the clay/silt fraction in MHS were more available than PAHs associated with coal-derived fraction. Therefore, although total PAH reductions were small, the removal of PAHs from the more easily available sediment fraction (clay/silt) may result in a significant environmental benefit owing to a reduction in total PAH bioavailability. By using naphthalene as a model PAH compound, biodegradation of naphthalene under denitrifying condition was assessed in microcosms containing MHS. Naphthalene spiked into MHS was degraded below detection limit within 20 days with the accompanying reduction of nitrate. With repeated addition of naphthalene and nitrate, naphthalene degradation under nitrate reducing conditions was stable over one month. Nitrite, one of the intermediates of denitrification was detected during the incubation. Also the denitrification activity of the enrichment culture from MHS slurries was verified by monitoring the production of nitrogen gas in solid fluorescence denitrification medium. Microorganisms capable of degrading naphthalene via denitrification were isolated from this enrichment culture.

  • PDF

Dynamic shear behavior of geosynthetic-soil interface considering thermalchemical factors (열-화학적 인자를 고려한 복층터널의 지반-토목섬유의 접촉면 전단거동)

  • Jang, Dong-In;Kwak, Chang-Won;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.213-220
    • /
    • 2016
  • The needs for the utilization of space in the urban ara due to the increasing population and traffic volume. A Double-deck tunnel can be an appropriate solution. Geosynthetics are inevitably installed between ground and tunnel lining, therefore, geosynthetic-soil interface is also comprises. Dynamic shear behavior of geosynthetic-soil interface affects the dynamic behavior of tunnel, and experimental study is required since the behavior is very complicated. In this study, chemical factors such as acid and basic element in the groundwater and temperature are considered in the laboratory test. Multi-purpose Interface Apparatus(M-PIA) is utilized and submerging periods are 60 and 960 days. Consequently, dynamic shear degradation of geosynthetic-soil interface considering chemical and thermal factors are verified.

Evaluation of a Ground Heat Exchanger Appropriate for the Site of the Third Stage Construction of Incheon International Airport (인천국제공항 3단계 건설부지에 적합한 지중열교환기 시스템 평가 연구)

  • Cho, Nam-Hyun;Song, Jung-Tae;Yoon, Seok;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.5
    • /
    • pp.23-33
    • /
    • 2015
  • In the present study, a ground heat exchanger was installed for each heat source in the system at the site to evaluate ground heat conductivity, constructability, and economic feasibility; the factors considered in the study included ground heat, groundwater, fillers (such as bentonite and pea pebbles) and the shape of the heat exchange pipe (e.g., U and D-U). The aim was to determine the ground heat exchanger appropriate for the geothermal system in the 3rd-phase construction of Incheon International Airport. A comparative cost analysis of the initial costs based on the above information showed that although the initial costs of the regular vertical closed loop-II and modified vertical closed loop were lower than those of the regular vertical closed loop-I, they could not be expected to deliver high economic efficiency from the viewpoint of constructability (filler injection, heat exchange pipe insertion). The initial costs proved to be higher in the case of Geohil.

Analysis of Hydro-Mechanical Coupling Behavior Considering Excavation Damaged Zone in HLW Repository (고준위방사성폐기물 처분장에서의 굴착손상대를 고려한 수리-역학적 복합거동 해석)

  • Jeewon Lee;Minju Kim;Sangki Kwon
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.38-61
    • /
    • 2023
  • An Excavation Damaged Zone(EDZ) caused by blasting impact changes rock properties, in situ stress distribution, etc., and its effects are noticeable at around a radioactive waste repository located at deep underground. In particular, the increase in permeability due to the formation of cracks may significantly increase the amount of groundwater inflow and the possibility of radioactive nuclide outflow. In this study, FLAC2D and FLAC3D were used to analyze the mechanical and thermal behaviors for three categories: a)No EDZ, b)Uniform EDZ, and c)Random EDZ. It was found that the tunnel displacement in the Random EDZ case was 423% higher than that in the No EDZ case and was 16% higher than that in the Uniform EDZ case. Tunnel inflow in the Random EDZ was also 17.3% and 10.8% higher than that in the No EDZ and the Uniform EDZ case, respectively. The permeability around the tunnel was increased by up to 10 times in the corner of the tunnel wall and roof due to the stress redistribution after excavation. From the computer simulation, it was found that the permeability around the tunnel wall was partially increased but the overall tunnel inflow was decreased with increase of stress ratio. Mechanical analysis using FLAC 3D showed similar results. Slight difference between 2D and 3D could be explained with the development of plastic zone during the advance of tunnel excavation in 3D.

Hydrochemistry and Noble Gas Origin of Various Hot Spring Waters from the Eastern area in South Korea (동해안지역 온천유형별 수리화학적 특성 및 영족기체 기원)

  • Jeong, Chan-Ho;Nagao, Keisuke;Kim, Kyu-Han;Choi, Hun-Kong;Sumino, Hirochika;Park, Ji-Sun;Park, Chung-Hwa;Lee, Jong-Ig;Hur, Soon-Do
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • The purpose of this study is to characterize the hydrogeochemical characteristics of hot spring waters and to interpret the source of noble gases and the geochemical environment of the hot spring waters distributed along the eastern area of the Korean peninsula. For this purpose, We carried out the chemical, stable isotopic and noble gas isotopic analyses for eleven hot spring water and fourteen hot spring gas samples collected from six hot spring sites. The hot spring waters except the Osaek hot spring water show the pH range of 7.0 to 9.1. However, the Osaek $CO_2$-rich hot spring water shows a weak acid of pH 5.7. The temperature of hot spring waters in the study area ranges from $25.7^{\circ}C$ to $68.3^{\circ}C$. Electrical conductivity of hot spring waters varies widely from 202 to $7,130{\mu}S/cm$. High electrical conductivity (av., $3,890{\mu}S/sm$) by high Na and Cl contents of the Haeundae and the Dongrae hot spring waters indicates that the hot spring waters were mixed with seawater in the subsurface thermal system. The type of hot springs in the viewpoint of dissolved components can be grouped into three types: (1) alkaline Na-$HCO_3$ type including sulfur gas of the Osaek, Baekam, Dukgu and Chuksan hot springs, and (2) saline Na-Cl type of the Haeundae and Dongrae hot springs, and (3) weak acid $CO_2$-rich Na-$HCO_3$ type of Osaek hot spring. Tritium ratios of the Haeundae and the Dongrae hot springs indicate different residence time in their aquifers of older water of $0.0{\sim}0.3$ TU and younger water of $5.9{\sim}8.8$ TU. The ${\delta}^{18}O$ and ${\delta}D$ values of hot spring waters indicate that they originate from the meteoric water, and that the values also reflect a latitude effect according to their locations. $^3He/^4He$ ratios of the hot spring waters except Osaek $CO_2$-rich hot spring water range from $0.1{\times}10^{-6}$ to $1.1{\times}10^{-6}$ which are plotted above the mixing line between air and crustal components. It means that the He gas in hot spring waters was originated mainly from atmosphere and crust sources, and partly from mantle sources. The Osaek $CO_2$-rich hot spring water shows $3.3{\times}10^{-6}$ in $^3He/^4He$ ratio that is 2.4 times higher than those of atmosphere. It provides clearly a helium source from the deep mantle. $^{40}Ar/^{36}Ar$ ratios of hot spring water are in the range of an atmosphere source.

Assessment of Environmental Conservation Function using Changes of Land Use Area and Surface Temperature in Agricultural Field (용인시의 토지이용면적과 지표면 온도 변화를 이용한 환경보전 기능 변동 계량화)

  • Ko, Byong-Gu;Kang, Kee-Kyung;Hong, Suk-Young;Lee, Deog-Bae;Kim, Min-Kyeong;Seo, Myung-Chul;Kim, Gun-Yeob;Park, Kwang-Lai;Lee, Jung-Taek
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • This study was aimed at assess environmental conservation functions by analyzing the change of land use areas in agricultural fields between 1999 and 2006, and comparing land surface temperature distribution between 1994 and 2006 in Yongin city. Land use maps of Yongin city were obtained from soil maps for 1999, Quickbird satellite images(less than 1 m) and parcel map for 2006. The land use area for Yongin city was in the order of forest > paddy field > upland > residence & building in 1999, and forest > residence & building > paddy field > upland in 2006. Decrease of paddy and upland fields reduced 34% and 41% of the capability of agricultural multifunctionality as to environment including flood control, groundwater recharge, and air cooling. Land surface temperature(LST) was derived from Landsat TM thermal infrared band acquired in September of 1994 and 2006 and classified into three grades. The results impplied that green vegetation in agricultural field and forest play an important role to reduce land surface temperature in warm season.

A Characteristics and Improvement of Thermal Environment in Summer of Protected Horticulture Complex Using CFD Simulation (CFD 시뮬레이션을 이용한 시설원예단지 여름철 외부 열환경 특성 및 개선방안)

  • Son, Jin-Kwan;Kong, Min-Jae;Choi, Deuggyu;Kang, Dong-Hyeon;Park, Min-Jung;Yun, Sung-Wook;Lee, Seungchul;Lee, Si-Young
    • Journal of Korean Society of Rural Planning
    • /
    • v.24 no.3
    • /
    • pp.73-86
    • /
    • 2018
  • Agricultural or rural landscape provides various ecosystem services. However, the ecosystem services function is declining due to various environmental problems such as climate change, land use change, stream intensification, non-point pollution and garbage. The A1B scenario predicts that the mean air temperature of South Korea will rise $3.8^{\circ}C$ degrees celsius in 2100. Agricultural sector is very vulnerable to climate change, so it must be thoroughly predicted and managed. In Korea, the facility horticulture complex is 54,051ha in 2016 and is the 3rd largest in the world(MAFRA, 2014). Facilities of horticultural complexes are reported to cause problems such as groundwater decrease, vegetation and insects diversity reduction, landscapes damage and garbage increase, compared with the existing land use paddy fields. Heat island phenomenon associated with climate change is also accelerated by the high heat absorption of horticultural sites. Therefore, we analyzed the heat island phenomenon occurring in the facility of horticultural complex in Korea. As an improvement measurement, I examined how much air temperature is reduced by putting the channel and the open space. In the case of the Buyeo area, the Computational Fluid Dynamics (CFD) simulation was analyzed for the average summer temperature distribution in the current land use mode at $38.9^{\circ}C$. As an improvement measurement, CFD simulation after 10% of 6m water channel was found to have an effect of lowering the summer temperature of about $2.7^{\circ}C$ compared with the present average of $36.2^{\circ}C$. In addition, CFD simulations after analyzing 10% of the open space were analyzed at $34.7^{\circ}C$, which is $4.2^{\circ}C$ lower than the present. For the Jinju area, CFD simulations were analyzed for the average temperature of summer at $37.8^{\circ}C$ in the present land use pattern. As an improvement measure, CFD simulations after 10% of 6m water channel were found to have an effect of lowering the summer temperature of about $2.6^{\circ}C$ compared to the current average of $35.2^{\circ}C$. In addition, CFD simulations after analyzing 10% of the open space were analyzed at $33.9^{\circ}C$, which is $3.9^{\circ}C$ lower than the present. It can be said that the effect of summer temperature drop in open space and waterway has been proven. The results of this study are expected to be reflected in sustainable agriculture land use and used as basic data for government - level policy in land use planning for climate change.

Evaluation of mechanical characteristics of marine clay by thawing after artificial ground freezing method (인공동결공법 적용 후 융해에 따른 해성 점토지반의 역학적 특성 평가)

  • Choi, Hyun-Jun;Lee, Dongseop;Lee, Hyobum;Son, Young-Jin;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.31-48
    • /
    • 2019
  • The artificial ground freezing (AGF) method is a groundwater cutoff and/or ground reinforcement method suitable for constructing underground structures in soft ground and urban areas. The AGF method conducts a freezing process by employing a refrigerant circulating through a set of embedded freezing pipes to form frozen walls serving as excavation supports and/or cutoff walls. However, thermal expansion of the pore water during freezing may cause excessive deformation of the ground. On the other hand, as the frozen soil is thawed after completion of the construction, mechanical characteristics of the thawed soil are changed due to the plastic deformation of the ground and the rearrangement of soil fabric. This paper performed a field experiment to evaluate the freezing rate of marine clay in the application of the AGF method. The field experiment was carried out by circulating liquid nitrogen, which is a cryogenic refrigerant, through one freezing pipe installed at a depth of 3.2 m in the ground. Also, a piezo-cone penetration test (CPTu) and a lateral load test (LLT) were performed on the marine clay before and after application of the AGF method to evaluate a change in strength and stiffness of it, which was induced by freezing-thawing. The experimental results indicate that about 11.9 tons of liquid nitrogen were consumed for 3.5 days to form a cylindrical frozen body with a volume of about $2.12m^3$. In addition, the strength and stiffness of the ground were reduced by 48.5% and 22.7%, respectively, after a freezing-thawing cycle.