• Title/Summary/Keyword: thermal factor

Search Result 1,559, Processing Time 0.039 seconds

Survey Study of Optimal Cooling Equipment Capacity of the Large Hospitals in Busan City (부산지역 대형병원 냉방장비의 용량설정 실태조사)

  • Lee, Ji-Weon;Chin, Kyung-Il;Kim, Se-Hwan
    • KIEAE Journal
    • /
    • v.14 no.6
    • /
    • pp.105-110
    • /
    • 2014
  • The basic factors determining the amount of energy used in hospital buildings are weather conditions and building factors. But the real energy consumer is central plant equipment such as boilers and chillers that produce thermal energy for heating and cooling. Inaccurate decision of the primary equipment's size can cause a high initial-cost, an excessive equipment space, a wasted energy by low operation-efficiency and shortening of the machine's life. In this reason, the decision of optimal size for central plant equipment is very important. There are several factors for the decision such as an operation factor, a factor (equipment factor), piping losses and a simultaneous usage factor applied in the sizing process except a basic cooling load. But there is no standard method for applying those factors. Usually, factors are applied individually by an experience or custom of each engineer. In this study, the authors emphasize the meaning and the problem of those factors, examine them by analyzing factors which were applied to actual practices, and propose the recommendation value of safety, load, operation factors and application methods.

An efficient method using the modified view factor for estimating the molecular backscattering probability in the space conditions (Modified View Factor를 이용한 인공위성 분자오염 역류확률 예측법)

  • Lee, Jin-Won;Lee, Jae-Dal;Yi, Min-Young;Han, Dong-In;Lee, Chang-Ho;Lee, S.-R.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.57-62
    • /
    • 2005
  • Satellite contamination from back-scattered molecules has long been analyzed using the BGK theory or the DSMC technique which are rather inefficient in that they are complicated or take a long time in the analysis. This study presents a new technique of estimating the back-scattering contamination, which is very simple and easy to use like the view factor method and also very accurate. This method, called the modified view factor method, is equivalent to the DSMC in so far as the molecular thermal velocity is much smaller than the satellite velocity and the mean free path much longer than the satellite.

A Study on the Curing Properties of Kevlar/Epoxy Prepreg (케블라/에폭시 프리프레그의 경화특성에 관한 연구)

  • 제갈영순;이원철;권오혁;윤남균;임길수;안종기;박경준
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.1-7
    • /
    • 2001
  • The studies on the formulation and curing behaviors of Kevlar/Epoxy prepreg for NOSE CONE of aircraft were presented in this paper. Dielectrometer and differential scanning calorimeter were used in order to check the curing behaviors. This prepreg showed the lowest ionic viscosity around $120^{\circ}C$, and then the ionic viscosity was gradually increased up to $200^{\circ}C$. This indicated that the curing reaction of this prepreg started at $120^{\circ}C$ and the molecular weight was increased by the accelerated thermal cross-linking reaction. The loss factor and tan $\delta$ values were also measured and discussed. The loss factor behaviors of Kevlar/Epoxy prepreg, which is related to the fluidity of matrix, were fecund to be similar with that of ionic viscosity. The thermal reaction properties of this prepreg were also studied by differential scanning calorimeter.

  • PDF

Implementation of BSCT $320{\times}240$ IR-FPA for Uncooled Thermal Imaging System (비냉각 열 영상 시트템용 BSCT $320{\times}240$ IR-FPA의 구현)

  • Kang, Dae-Seok;Shin, Gyeong-Uk;Park, Jae-U;Yoon, Dong-Han;Song, Seong-Hae;Han, Myeong-Su
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.11
    • /
    • pp.7-13
    • /
    • 2002
  • BSCT 320${\times}$240 IRFPA detector module is implemented, which is a key component in uncooled thermal imaging systems. The detector module consists of two parts, infrared sensitive pixel array and read-out integrated circuit(ROIC). The BSCT 320${\times}$240 pixels are made by laser scribe process and 10-${\mu}m$ micro-bump to satisfy 50-${\mu}m$ pitch and 95-% fill-factor. The ROIC has been designed to electrically address the pixels sequentailly and to improve signal-to-noise ratio with single transistor amplifier, HPF, tunable LPF and clamp circuit. The fabricated hybrid chip of detector and ROIC has been mounted on the TEC built-in ceramic package for more stable operation and tested for lots of electrical and optical properties. The IRFA sample has shown successful properties and met with good results of fill-factor, detectivity and responsivity.

Effect of the Reactive Power Compensation System on Performance Enhancement in a 900 MW Combined Cycle Power Plant (무효전력보상장치 설치가 900 MW 복합화력발전소의 성능향상에 미치는 효과)

  • Lee, Young Ok;Yoo, Hoseon
    • Plant Journal
    • /
    • v.17 no.2
    • /
    • pp.48-53
    • /
    • 2021
  • In the case of a 900 MW combined cycle power plant, most of the load on the site is a rotating device and is operated at a low power factor, and the power factor decrease increases the reactive power, which causes the efficiency of the device to be consumed and unnecessary unnecessary power consumption. This study intends to present the results by installing and operating a reactive power compensation device that absorbs and removes reactive power, which is a solution to this problem, on a 6.9 kV on-board bus. As a result of application of this system, first, it was confirmed that the power factor of the rotating machine was improved to 0.22 and the load power in the house was reduced by 1.4%, and the thermal efficiency of the generator was increased by 0.1% and the power generation power by 810 kW. Next, it was confirmed that the cost of construction and operation can be reduced in the future due to economic feasibility, with a decrease of 200 million won/year in electricity loss compared to 1.5 billion won in investment, an increase of 1 billion won/year in sales, and a one-year capital recovery period.

Effects of Y2O3 Addition on Densification and Thermal Conductivity of AlN Ceramics During Spark Plasma Sintering (Y2O3 첨가가 AlN 세라믹스의 방전 플라즈마 소결 거동 및 열전도도에 미치는 영향)

  • Chae, Jae-Hong;Park, Joo-Seok;Ahn, Jong-Pil;Kim, Kyoung-Hun;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.827-831
    • /
    • 2008
  • Spark plasma sintering (SPS) of AlN ceramics were carried out with ${Y_2}{O_3}$ as sintering additive at a sintering temperature $1,550{\sim}1,700^{\circ}C$. The effect of ${Y_2}{O_3}$ addition on sintering behavior and thermal conductivity of AlN ceramics was studied. ${Y_2}{O_3}$ added AlN showed higher densification rate than pure AlN noticeably, but the formation of yttrium aluminates phases by the solid-state reaction of ${Y_2}{O_3}$ and ${Al_2}{O_3}$ existed on AlN surface could delay the densification during the sintering process. The thermal conductivity of AlN specimens was promoted by the addition of ${Y_2}{O_3}$ up to 3 wt% in spite of the formation of YAG secondary phase in AlN grain boundaries because ${Y_2}{O_3}$ addition could reduced the oxygen contents in AlN lattice which is primary factor of thermal conductivity. However, the thermal conductivity rather decreased over 3 wt% addition because an immoderate formation of YAG phases in grain boundary could decrease thermal conductivity by a phonon scattering surpassing the contribution of ${Y_2}{O_3}$ addition.

Indoor Neutral Temperature Range using Temperature and Humidity Perception Assessment

  • Yang, Wonyoung
    • KIEAE Journal
    • /
    • v.16 no.5
    • /
    • pp.29-37
    • /
    • 2016
  • Purpose: Indoor thermal comfort can be identified by combination of temperature, humidity, and air flow, etc. However, most thermal indexes in regard to thermal comfort are temperature dominant since it has been considered as a significant factor affecting to indoor thermal comfort The purposes of this study are to investigate indoor neutral temperature range of young Koreans with humidity perception, and to introduce a neutral temperature for temperature preference as well as temperature sensation in order to define the neutral temperature range chosen by occupants. It could be used as basic data for heating and cooling. Method: 26 research participants volunteered in 7 thermal conditions ($18^{\circ}C$ RH 30%, $18^{\circ}C$ RH 60%, $24^{\circ}C$ RH 30%, $24^{\circ}C$ RH 40%, $24^{\circ}C$ RH 60%, $30^{\circ}C$ RH 30%, $30^{\circ}C$ RH 60%) and completed subjective assessment in regard to temperature/humidity sensation and preference twice per condition in an indoor environmental chamber. Result: In RH 30%, sensation neutral temperature was $25.1^{\circ}C$ for men and $27.0^{\circ}C$ for women, and preference neutral temperature was $25.5^{\circ}C$ for men and $27.8^{\circ}C$ for women. In RH 60%, sensation neutral temperature was $23.6^{\circ}C$ for men and $25.9^{\circ}C$ for women, and preference neutral temperature was $23.4^{\circ}C$ for men and $26.3^{\circ}C$ for women. Neutral temperature increased with increasing relative humidity. Women were sensitive to humidity changes. Men expressed humidity changes as temperature variations. In most conditions, preference neutral temperatures were higher than sensation neutral temperatures, however, the preference neutral temperature for men in humid condition was lower than the sensation neutral temperature.

Experimental Verification of Heat Sink for FPGA Thermal Control (FPGA 열제어용 히트싱크 효과의 실험적 검증)

  • Park, Jin-Han;Kim, Hyeon-Soo;Ko, Hyun-Suk;Jin, Bong-Cheol;Seo, Hak-Keum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.789-794
    • /
    • 2014
  • The FPGA is used to the high speed digital satellite communication on the Digital Signal Process Unit of the next generation GEO communication satellite. The high capacity FPGA has the high power dissipation and it is difficult to satisfy the derating requirement of temperature. This matter is the major factor to degrade the equipment life and reliability. The thermal control at the equipment level has been worked through thermal conduction in the space environment. The FPGA of CCGA or BGA package type was mounted on printed circuit board, but the PCB has low efficient to the thermal control. For the FPGA heat dissipation, the heat sink was applied between part lid and housing of equipment and the performance of heat sink was confirmed via thermal vacuum test under the condition of space qualification level. The FPGA of high power dissipation has been difficult to apply for space application, but FPGA with heat sink could be used to space application with the derating temperature margin.

Effect of the factor developing the Heat of Hydration on Durability Design in the Subway Concrete Structure (수화열 발생인자가 지하철 콘크리트 구조물의 내구설계에 미치는 영향)

  • Lim Young-Su;Kim Eun Kyum;Sung Ki Han
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1131-1137
    • /
    • 2004
  • With the recent continuous expansion of subways, newly created subways tend to have lower locations and wider sections. Furthermore. since box structures and evacuating tunnels are classified into a category of mass-concrete. the thermal-stress, emitted from the inside. causes cracks to structures from the inception of constructing. In this paper, thermal-stress analysis and durability evaluation of box structure were carried out to investigate relationship between durability and parameter causing the heat of hydration. Through the examination, this paper tries to find out satisfactory solutions to regulated thermal crack and ensure the required duration period. The results of this paper showed that to control thermal crack and guarantee the required duration period it was more effective to use low-heat-portland cement and moderateheat-portland cement. As cement volume due to reduction of water-cement ratio increased, the possibility of thermal cracks occurrence increased but results of durability evaluation was different depending on evaluation method. The results showed that the appropriate water-cement ratio to control the heat of hydration and satisfy the required durability was $45\∼55\%$. And it was showed that during placement of concrete blocks ambient temperature affect the heat of hydration. thermal crack and long-term durability largely and when concrete was placed at low temperature to control thermal crack. it need to try to guarantee the required duration period. Henceforth, by studying not only internal and external conditions, such as the relative humidity and the unit weight. but also methods, to evaluate durability, in accordance with domestic situations, more reasonable design of durability should be achieved.

  • PDF

A Review Method of Calculation Results on Cable Ampacity using the Transformation to Electric Equivalent Circuit from Cable Thermal Circuit (케이블 열회로의 전기적 등가회로 변환을 이용한 케이블 허용전류 검토 방법)

  • Kang, Yeon-Woog;Kim, Min-Ju;Jang, Tae-In;Park, Jin-Woo;Park, Hung-Sok;Kang, JI-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.738-744
    • /
    • 2016
  • Current rating of a power cable can be calculated by the maximum allowable temperature in an insulating material considering the heat transfer from cable conductor. Therefore, it is very important to calculate the current rating using electrical equivalent circuit by calculated cable thermal circuit parameters but, it has not been fully investigated yet. In this paper, in order to determine the current rating of power cable, conventional calculation method has been reviewed considering the conductor resistance, loss factor of sheath, dielectric losses and thermal resistances based on the maximum allowable temperature of 345 kV $2500mm^2$ XLPE cable. To confirm the calculation result of the current rating, the conductor temperature should be examined whether it reaches the maximum allowable temperature by the thermal equivalent circuit of the cable. Then, utilizing EMTP (Electro-Magnetic Transient Program) which is a conventional program for electrical circuit, the thermal equivalent circuit was transformed to an electric equivalent circuit using an analogous relationship between thermal circuit and electrical circuit, and temperature condition including cable conductor, sheath, cable jacket could be calculated by the current rating of 345 kV $2500mm^2$ XLPE cable.