• Title/Summary/Keyword: thermal factor

Search Result 1,559, Processing Time 0.033 seconds

Influence of Co-sputtered HfO2-Si Gate Dielectric in IZO-based thin Film Transistors (HfO2-Si의 조성비에 따른 HfSiOx의 IZO 기반 산화물 반도체에 대한 연구)

  • Cho, Dong Kyu;Yi, Moonsuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.98-103
    • /
    • 2013
  • In this work, we investigated the enhanced performance of IZO-based TFTs with $HfSiO_x$ gate insulators. Four types of $HfSiO_x$ gate insulators using different diposition powers were deposited by co-sputtering $HfO_2$ and Si target. To simplify the processing sequences, all of the layers composing of TFTs were deposited by rf-magnetron sputtering method using patterned shadow-masks without any intentional heating of substrate and subsequent thermal annealing. The four different $HfSiO_x$ structural properties were investigated x-ray diffraction(XRD), atomic force microscopy(AFM) and also analyzed the electrical characteristics. There were some noticeable differences depending on the composition of the $HfO_2$ and Si combination. The TFT based on $HfSiO_x$ gate insulator with $HfO_2$(100W)-Si(100W) showed the best results with a field effect mobility of 2.0[$cm^2/V{\cdot}s$], a threshold voltage of -0.5[V], an on/off ratio of 5.89E+05 and RMS of 0.26[nm]. This show that the composition of the $HfO_2$ and Si is an important factor in an $HfSiO_x$ insulator. In addition, the effective bonding of $HfO_2$ and Si reduced the defects in the insulator bulk and also improved the interface quality between the channel and the gate insulator.

Influence of the hydrogen post-annealing on the electrical properties of metal/alumina/silicon-nitride/silicon-oxide/silicon capacitors for flash memories

  • Kim, Hee-Dong;An, Ho-Myoung;Seo, Yu-Jeong;Zhang, Yong-Jie;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.122-122
    • /
    • 2008
  • Recently, Metal/Alumina/Silicon-Nitride/Silicon-Oxide/Silicon (MANOS) structures are one of the most attractive candidates to realize vertical scaling of high-density NAND flash memory [1]. However, as ANO layers are miniaturized, negative and positive bias temperature instability (NBTI/PBTI), such as the flat band voltage shift, ${\Delta}V_{FB}$, the interfacial trap density increase, ${\Delta}D_{it}$, the gate leakage current, ${\Delta}I_G$. and the retention characteristics, in MONOS capacitors, becomes an important issue in terms of reliability. It is well known that tunnel oxide degradation is a result of the oxide and interfacial traps generation during FN (Fowler-Nordheim) stress [2]. Because the bias temperature stress causes an increase of both interfacial-traps and fixed oxide charge could be a factor, witch can degrade device reliability during the program and erase operation. However, few studies on NBTI/PBTI have been conducted on improving the reliability of MONOS devices. In this work, we investigate the effect of post-annealing gas on bias temperature instability (BTI), such as the flat band voltage shift, ${\Delta}V_{FB}$, the interfacial trap density shift, ${\Delta}I_G$ retention characteristics, and the gate leakage current characteristics of MANOS capacitors. MANOS samples annealed at $950^{\circ}C$ for 30 s by a rapid thermal process were treated via additional annealing in a furnace, using annealing gases $N_2$ and $N_2-H_2$ (2 % hydrogen and 98 % nitrogen mixture gases) at $450^{\circ}C$ for 30 min. MANOS samples annealed in $N_2-H_2$ ambient had the lowest flat band voltage shift, ${\Delta}V_{FB}$ = 1.09/0.63 V at the program/erase state, and the good retention characteristics, 123/84 mV/decade at the program/erase state more than the sample annealed at $N_2$ ambient.

  • PDF

A High Yield Rate MEMS Gyroscope with a Packaged SiOG Process (SiOG 공정을 이용한 고 신뢰성 MEMS 자이로스코프)

  • Lee Moon Chul;Kang Seok Jin;Jung Kyu Dong;Choa Sung-Hoon;Cho Yang Chul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.187-196
    • /
    • 2005
  • MEMS devices such as a vibratory gyroscope often suffer from a lower yield rate due to fabrication errors and the external stress. In the decoupled vibratory gyroscope, the main factor that determines the yield rate is the frequency difference between the sensing and driving modes. The gyroscope, fabricated with SOI (Silicon-On-Insulator) wafer and packaged using the anodic bonding, has a large wafer bowing caused by thermal expansion mismatch as well as non-uniform surfaces of the structures caused by the notching effect. These effects result in large distribution in the frequency difference, and thereby a lower yield rate. To improve the yield rate we propose a packaged SiOG (Silicon On Glass) technology. It uses a silicon wafer and two glass wafers to minimize the wafer bowing and a metallic membrane to avoid the notching. In the packaged SiOG gyroscope, the notching effect is eliminated and the warpage of the wafer is greatly reduced. Consequently the frequency difference is more uniformly distributed and its variation is greatly improved. Therefore we can achieve a more robust vibratory MEMS gyroscope with a higher yield rate.

  • PDF

Numerical Analysis of Warpage and Reliability of Fan-out Wafer Level Package (수치해석을 이용한 팬 아웃 웨이퍼 레벨 패키지의 휨 경향 및 신뢰성 연구)

  • Lee, Mi Kyoung;Jeoung, Jin Wook;Ock, Jin Young;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2014
  • For mobile application, semiconductor packages are increasingly moving toward high density, miniaturization, lighter and multi-functions. Typical wafer level packages (WLP) is fan-in design, it can not meet high I/O requirement. The fan-out wafer level packages (FOWLPs) with reconfiguration technology have recently emerged as a new WLP technology. In FOWLP, warpage is one of the most critical issues since the thickness of FOWLP is thinner than traditional IC package and warpage of WLP is much larger than the die level package. Warpage affects the throughput and yield of the next manufacturing process as well as wafer handling and fabrication processability. In this study, we investigated the characteristics of warpage and main parameters which affect the warpage deformation of FOWLP using the finite element numerical simulation. In order to minimize the warpage, the characteristics of warpage for various epoxy mold compounds (EMCs) and carrier materials are investigated, and DOE optimization is also performed. In particular, warpage after EMC molding and after carrier detachment process were analyzed respectively. The simulation results indicate that the most influential factor on warpage is CTE of EMC after molding process. EMC material of low CTE and high Tg (glass transition temperature) will reduce the warpage. For carrier material, Alloy42 shows the lowest warpage. Therefore, considering the cost, oxidation and thermal conductivity, Alloy42 or SUS304 is recommend for a carrier material.

Development of an Aerodynamic Simulation for Studying Microclimate of Plant Canopy in Greenhouse - (1) Study on Aerodynamic Resistance of Tomato Canopy through Wind Tunnel Experiment - (공기유동해석을 통한 온실내 식물군 미기상 분석기술 개발 - (1) 풍동실험을 통한 토마토 식물군의 공기저항 연구 -)

  • Lee In-Bok;Yun Nam-Kyu;Boulard Thierry;Roy Jean Claude;Lee Sung-Hyoun;Kim Gyoeng-Won;Lee Seung-Kee;Kwon Soon-Hong
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.289-295
    • /
    • 2006
  • A computational fluid dynamics (CFD) numerical model has been developed to effectively study the ventilation efficiency of multi-span greenhouses with internal crops. As the first step of the study, the internal plants of the CFD model had to be designed as a porous media because of the complexity of its physical shapes. In this paper, the results of the wind tunnel tests were introduced to find the aerodynamic resistance of the plant canopy. The Seogun tomato was used for this study which made significant effects on thermal and mass exchanges with the adjacent air as well as internal airflow resistance. With the main factors of wind speed, static pressure, and density of plant canopy, the aerodynamic resistance factor was statically found. It was finally found to be 0.26 which will be used later as an input data of the CFD model. Moreover, the experimental procedure of how to find the aerodynamic resistance of various plants using, wind tunnel was established through this study.

Comparison of Heating Behavior of Various Susceptor-embedded Thermoplastic Polyurethane Adhesive Films via Induction Heating (다양한 발열체가 분산된 폴리우레탄 접착 필름의 유도가열 거동 비교)

  • Kwon, Yongsung;Bae, Duckhwan;Shon, MinYoung
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.181-187
    • /
    • 2017
  • The effect of nanoscopic and microscopic Fe, $Fe_3O_4$, and Ni particles and their shapes and substrate materials on the heating behavior of thermoplastic polyurethane (TPU) adhesive films was investigated via induction heating. The heat generation tendency of $Fe_3O_4$ particles was higher than that shown by Fe and Ni particles in the TPU adhesive films. When the Fe and Ni particle size was larger than the penetration skin depth, the initial heating rate and maximum temperature increased with an increase in the particle size. This is attributed to the eddy current heat loss. The heating behavior of the TPU films with Ni particles of different shapes was examined, and different hysteresis heat losses were observed depending on the particle shape. Consequently, the flake-shaped Ni particles showed the most favorable heat generation because of the largest hysteresis loss. The substrate materials also affected the heating behavior of the TPU adhesive films in an induction heating system, and the thermal conductivity of the substrate materials was determined to be the main factor affecting the heating behavior.

A Study on Infrared Emissivity Measurement of Material Surface by Reflection Method (반사법에 의한 재료표면의 적외선 방사율 측정에 관한 연구)

  • Kang, Byung-Chul;Kim, Sang-Myoung;Choi, Joung-Yoon;Kim, Gun-Ok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.484-488
    • /
    • 2010
  • Infrared emissivity is one of the most important factors for the temperature measurement by infrared thermography. Although the infrared emissivity of an object can be measured from the ratio of blackbody and the object, at room temperature it is practically difficult to measure the value due to the background effects. Hence, quantitative reflectance of bare steel plate and the surface of coating was measured by FT-IR spectroscopy and emissivity was calculated from this. The emissivity of polished bare steel surface was from 0.06 to 0.10 and the value for the unpolished bare steel can not be achieved because optical characteristics changes of surface roughness induces erroneous results. Emissivity of transparent paint coated steel was from 0.50 to 0.84. Depends on the IR absorption regions, which is a characteristic value of the coating, emissivity changes. This study suggests surface condition of material, thickness, roughness et cetra are important factor for IR optical characteristics. Emissivity measurement by reflection method is useful technique to be applied for metal and it with coating applied on the surface. The range of experimental errors of temperature can be narrowed by the application of infrared thermography from the measured thermal emissivity.

Investigation of field emission mechanism of undoped polyucrystalline diamond films

  • Shim, Jae-Yeob;Chi, Eung-Joon;Song, Kie-Moon;Baik, Hong-Koo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.62-62
    • /
    • 1999
  • Carbon based materials have many attractive properties such as a wide band gap, a low electron affinity, and a high chemical and mechanical stability. Therefore, researches on the carbon-based materials as field emitters have been drawn extensively to enhance the field emission properties. Especially, diamond gives high current density, high current stability high thermal conductivity durable for high temperature operation, and low field emission behaviors, Among these properties understanding the origin of low field emission is a key factor for the application of diamond to a filed emitter and the verification of the emission site and its distribution of diamond is helpful to clarify the origin of low field emission from diamond There have been many investigations on the origin of low field emission behavior of diamond crystal or chemical vapor deposition (CVD) diamond films that is intentionally doped or not. However, the origin of the low field emission behavior and the consequent field emission mechanism is still not converged and those may be different between diamond crystal and CVD diamond films as well as the diamond that is doped or not. In addition, there have been no systematic studies on the dependence of nondiamond carbon on the spatial distribution of emission sites and its uniformity. Thus, clarifying a possible mechanism for the low field emission covering the diamond with various properties might be indeed a difficult work. On the other hand, it is believed that electron emission mechanisms of diamond are closely related to the emission sites and its distributions. In this context, it will be helpful to compare the spatial distribution of emission sites and field emission properties of the diamond films prepared by systematic variations of structural property. In this study, we have focused on an understanding of the field emission variations of structural property. In this study, we have focused on an understanding of the field emission mechanism for the CVD grown undoped polycrystalline diamond films with significantly different structural properties. The structural properties of the films were systematically modified by varying the CH4/H2 ratio and/or applying positive substrate bias examined. It was confirmed from the present study that the field emission characteristics are strongly dependent on the nondiamond carbon contents of the undoped polycrystalline diamond films, and a possible field emission mechanism for the undoped polycrystalline diamond films is suggested.

  • PDF

Effects of Some Environmental Factors on the Germination of Seeds in Ambrosia artemisiifolia var. elatior (몇가지 환경요인이 돼지풀의 종자발아에 미치는 영향)

  • 김종홍;김원희;차승희
    • The Korean Journal of Ecology
    • /
    • v.25 no.2
    • /
    • pp.93-100
    • /
    • 2002
  • In order to analyze the life cycle of A. artemisiifolia var. elation dormancy and some environmental factors inducing germination of the seeds were examined. The results were as follows : Dormancy of fertile seeds was broken in part within a month after seed collection in case of adequate moisture and alternating temperature was also effective in breaking dormancy. The temperature range, which allow germination was 12℃ ∼ 32℃. Optimum temperature for germination was 24℃. The seed of A. artemisiifolia var. elatior was light-independent. The difference of storage period appeared to have no particular effect on the viability of seeds at any time during the 9-month storage period. In the increasing temperature(IT) regime, A artemisiifolia var. elatior seeds started to germinate at 16℃, showing the higher temperature the greater germination rate, the final germination percentage was 99.34%. On the other hand, in the decresing temperature(DT) regime, seeds began to germinate at 20℃ with the 1.34% germination. An induced dormancy occurred at 12℃ making the 5.34% fecal germination in the DT regime. Low temperature was more effective to break dormancy than higher temperature Seeds of A. artemisiifolia var. elatior seems to be germinated in mid to late autumn or germination delayed until following spring. The above results suggest these variation of germination response in diverse environmental factors seems to be a physiological strategy to maintain their existence and to reproduce in the extreme thermal variation.

Archaeomagnetic Dating of Hemp Kiln and Lime Kiln (삼가마와 회가마의 고고지자기 연대)

  • Sung, Hyong-Mi
    • Journal of Conservation Science
    • /
    • v.27 no.3
    • /
    • pp.291-300
    • /
    • 2011
  • Archaeomagnetic dating method is used to assign a date to the archaeological remains in which burnt soil is found by measuring the changes in terrestrial magnetism with the thermal remanent magnetization retained in burnt soil. This method, in particular, is quite useful to determine an age of the archaeological remains in which no properties are found, which makes it difficult to assigning a date. Hemp kiln and lime kiln fall under remains of these features, and 21 and 5 archaeomagnetic data from both kilns respectively were obtained by measuring the- remanent magnetization in burnt soil samples that are extracted in hemp kilns and lime kilns in the country. The results of archaeomagnetic dating with these data show the age range of the hemp kilns is between the late 10th century A.D. and the middle of the 19th century, and that of the lime kilns is between the early 16th century A.D. and the middle of the 18th century. The factor that the number of data collected from the hemp kilns was comparatively more than those from the lime kilns might affect the result, however corresponding to the fact that hemp had been used for a long period of time, the period of hemp kiln are widely spread over the chronological table. And the archaeomagnetic dating of lime kiln, in view of archaeological periods, is not only in accord with the late Joseon period when the tombs with lime-soil mixture barrier in trend; this is also telling that its width of archaeological period is comparatively narrow.