• Title/Summary/Keyword: thermal factor

Search Result 1,559, Processing Time 0.029 seconds

Analysis of the Relationship between Three-Dimensional Built Environment and Urban Surface Temperature (도시의 3차원 물리적 환경변수와 지표온도의 관계 분석)

  • Li, Yige;Lee, Sugie;Han, Jaewon
    • Journal of Korea Planning Association
    • /
    • v.54 no.2
    • /
    • pp.93-108
    • /
    • 2019
  • This study examines the relationship between three-dimensional urban built environment and urban surface temperature using LANDSAT 8 satellite image data in Seoul city. The image was divided into 600m×600m grid units as an unit of analysis. Due to the high level of spatial dependency in surface temperature, this study uses spatial statistics to take into account spatial auto-correlation. The spatial error model shows the best goodness of fit. The analysis results show that the three-dimensional built environment and transport environment as well as natural environment have statistically significant associations with surface temperature. First, natural environment variables such as green space, streams and river, and average elevation show statistically significant negative association with surface temperature. Second, the building area shows a positive association with surface temperature. In addition, while sky view factor (SVF) has a positive association with surface temperature, surface roughness (SR) shows a negative association with it. Third, transportation related variables such as road density, railway density, and traffic volume show positive associations with surface temperature. Moreover, this study finds that SVF and SR have different effects on surface temperature in regard to the levels of total floor areas in built environment. The results indicate that interactions between floor area ratio (FAR) and three-dimensional built environmental variables such as SVF and SR should be considered to reduce urban surface temperature.

Sensitivity and uncertainty quantification of neutronic integral data in the TRIGA Mark II research reactor

  • Makhloul, M.;Boukhal, H.;Chakir, E.;El Bardouni, T.;Lahdour, M.;Kaddour, M.;Ahmed, Abdulaziz;Arectout, A.;El Yaakoubi, H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.523-531
    • /
    • 2022
  • In order to study the sensitivity and the uncertainty of the Moroccan research reactor TRIGA Mark II, a model of this reactor has been developed in our ERSN laboratory for use with the N-Particle MCNP Monte Carlo transport codes (version 6). In this article, the sensitivities of the effective multiplication factor of this reactor are evaluated using the ENDF/B-VII.0, ENDF/B-VII.1 and JENDL-4.0 libraries and in 44 energy groups, for the cross sections of the fuel (U-235 and U-238) and the moderator (H-1 and O-16). However, the quantification of the uncertainty of the nuclear data is performed using the nuclear code NJOY99 for the generation and processing of covariance matrices. On the one hand, the highest uncertainty deviations, calculated using the ENDFB-VII.1 and JENDL4.0 evaluations, are 2275, 386 and 330 pcm respectively for the reactions U235(n, f), $ U_{235}(n\bar{\nu})$ and H1(n, γ). On the other hand, these differences are very small for the neutron reactions of O-16 and U-238. Regarding the neutron spectra, in CT-mid plane, they are very close for the three evaluations (ENDF/B-VII.0, ENDF/B-VII.1 and JENDL-4.0). These spectra present two peaks (thermal and fission) around the energies 0.05 eV and 1 MeV.

Influence of Oxygen Annealing on Temperature Dependent Electrical Characteristics of Ga2O3/4H-SiC Heterojunction Diodes (산소 후열처리가 Ga2O3/4H-SiC 이종접합 다이오드의 온도에 따른 전기적 특성에 미치는 영향 분석)

  • Chung, Seung Hwan;Lee, Hyung Jin;Lee, Hee Jae;Byun, Dong Wook;Koo, Sang Mo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.138-143
    • /
    • 2022
  • We analyzed the influence of post-annealing on Ga2O3/n-type 4H-SiC heterojunction diode. Gallium oxide (Ga2O3) thin films were deposited by radio frequency (RF) sputtering. Post-deposition annealing at 950℃ in an Oxygen atmosphere was performed. The material properties of Ga2O3 and the electrical properties of the diodes were investigated. Atomic Force Microscopy (AFM), X-Ray Diffraction and Scanning Electron Microscope (SEM) images show a significant increase in the roughness and crystallinity of the O2-annealed films. After Oxygen annealing X-ray Photoelectron Spectroscopy (XPS) shows that the atomic ratio of oxygen increases which is related to a decrease in oxygen vacancy within the Ga2O3 film. The O2-annealed diodes exhibited higher on-current and lower leakage current. Moreover, the ideality factor, barrier height, and thermal activation energy were derived from the current-voltage curve by increasing the temperature from 298 - 434K.

Experimental and numerical FEM of woven GFRP composites during drilling

  • Abd-Elwahed, Mohamed S.;Khashaba, Usama A.;Ahmed, Khaled I.;Eltaher, Mohamed A.;Najjar, Ismael;Melaibari, Ammar;Abdraboh, Azza M.
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.503-522
    • /
    • 2021
  • This paper investigates experimentally and numerically the influence of drilling process on the mechanical and thermomechanical behaviors of woven glass fiber reinforced polymer (GFRP) composite plate. Through the experimental analysis, a CNC machine with cemented carbide drill (point angles 𝜙=118° and 6 mm diameter) was used to drill a woven GFRP laminated squared plate with a length of 36.6 mm and different thicknesses. A produced temperature during drilling "heat affected zone (HAZ)" was measured by two different procedures using thermal IR camera and thermocouples. A thrust force and cutting torque were measured by a Kistler 9272 dynamometer. The delamination factors were evaluated by the image processing technique. Finite element model (FEM) has been developed by using LS-Dyna to simulate the drilling processing and validate the thrust force and torque with those obtained by experimental technique. It is found that, the present finite element model has the capability to predict the force and torque efficiently at various drilling conditions. Numerical parametric analysis is presented to illustrate the influences of the speeding up, coefficient of friction, element type, and mass scaling effects on the calculated thrust force, torque and calculation's cost. It is found that, the cutting time can be adjusted by drilling parameters (feed, speed, and specimen thickness) to control the induced temperature and thus, the force, torque and delamination factor in drilling GFRP composites. The delamination of woven GFRP is accompanied with edge chipping, spalling, and uncut fibers.

Characteristic Analysis of Resistance Spot Welding between Dissimilar Materials of 1.035mm Laminated Vibration Damping Steel with 35㎛ Viscoelastic Resin (35㎛ 점탄성수지가 적용된 1.035mm 제진강판의 이종소재간 저항점용접 특성분석)

  • Bae, Ki-Man;Baek, Jong-Jin;Shin, Chang-Yeul;Kim, Seung-Kyung;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.24-29
    • /
    • 2021
  • Recently, owing to the high demand for eco-friendly cars in the automotive industry, noise and vibrations have become major challenges. The use of laminated damping steel is increasing in response to these demands. Laminated damping steel is primarily used in sound insulation plates. The vibration energy is converted into thermal energy due to the viscoelastic resin being located between two steel sheets and being able to damp the vibrations when an external force, such as, noise or vibration is applied to the steel plate. Laminated damping steel is chiefly applied to dash panels in automotive body parts, and because of its structure, junction technology for bonding with other components is necessary. However, there has not been sufficient research conducted on junctions. In this study, regardless of the electrode shape, in the range of 4.0 ~ 8.0 kA welding current, the same welding force and welding time were applied which were 2.8 kN and 200 m/s (12 cycles) and the tensile shear load and nugget size were analyzed after the resistance spot welding between different materials of laminated damping steel with a thickness of 1.035 mm. The results show that in the range of 5 ~ 8 kA welding current, 1.035 mm laminated damping steel meets the MS181-15 standard, which is the technical standard of Hyundai-Kia Motors.

Hydration and Mechanical Properties of High-volume Fly Ash Concrete with Nano-silica (나노 실리카를 혼입한 하이볼륨 플라이애시 콘크리트의 수화도 및 역학적 특성)

  • Cha, Soo-Won;Lee, Geon-Wook;Choi, Young-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.112-119
    • /
    • 2022
  • Recently, as carbon neutrality has been important factor in the construction industry, many studies have been conducted on the high-volume fly ash concrete. High volume fly ash concrete(HVFC) is usually made by replacing more than 50% of cement with fly ash. However, HVFC has a disadvantage of low compressive strength in early age. To overcome this shortcoming of HVFC, improve this, interest in techonolgy using nanomaterials is increasing. Nano silica is expected to improve the early age strength of HVFC as a pozzolanic material. This study investigated the effect of nano silica on the early hydration reaction and microstructure of HVFC. The early hydration reaction of HFVC was analyzed through setting time, isothermal calorimeter, compressive strength and thermal weight analysis. In addition, the microstructure of HVFC was measured by mercury intrusion porosimetry. From the test results, it was confirmed that nano silica increased the early age strength and improve the microstructure of HVFC.

An Insight Into the Recycling of Waste Flexible Polyurethane Foam Using Glycolysis

  • Woo Seok Jin;Pranabesh Sahu;Gyuri Kim;Seongrok Jeong;Cheon Young Jeon;Tae Gyu Lee;Sang Ho Lee;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.32-43
    • /
    • 2023
  • The worldwide use of polyurethane foam products generates large amounts of waste, which in turn has detrimental effects on the surroundings. Hence, finding an economical and environmentally friendly way to dispose of or recycle foam waste is an utmost priority for researchers to overcome this problem. In that sense, the glycolysis of waste flexible polyurethane foam (WFPF) from automotive seat cushions using different industrial-grade glycols and potassium hydroxide as a catalyst to produce recovered polyol was investigated. The effect of different molecular weight polyols, catalyst concentration, and material ratio (PU foam: Glycols) on the reaction conversion and viscosity of the recovered polyols was determined. The obtained recovered polyols are obtained as single or split-phase reaction products. Besides, the foaming characteristics and physical properties such as cell morphology, thermal stability, and compressive stress-strain nature of the regenerated flexible foams based on the recovered polyols were discussed. It was observed that the regenerated flexible foams displayed good seating comfort properties as a function of hardness, sag factor, and hysteresis loss compared to the reference virgin foam. With the growing demand for a sustainable and circular economy, a global valorization of glycolysis products from polyurethane scraps can be realized by transforming them into profitable substances.

Investigation of the Relationship Between Dishing and Mechanical Stress During CMP Process (수직하중에 의한 응력이 CMP 공정의 디싱에 미치는 영향)

  • Hyeong Gu Kim;Seung Hyun Kim;Min Woo Kim;Ik-Tae Im
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.30-34
    • /
    • 2023
  • Since dishing in the CMP process is a major factor that hinders the uniformity of the semiconductor thin film, many studies have focused this issue to improve the non-uniformity of the film due to dishing. In the metal layer, the dishing mainly occurs in the central part of the metal due to a difference in a selection ratio between the metal and the dielectric, thereby generating a step on the surface of the metal layer. Factors that cause dishing include the shape of the thin film, the chemical reaction of the slurry, thermal deformation, and the rotational speed of the pad and head, and dishing occurs due to complex interactions between them. This study analyzed the stress generated on the metal layer surface in the CMP process using ANSYS software, a commercial structure analysis program. The stress caused by the vertical load applied from the pad was analyzed by changing the area density and line width of the dummy metal. As a result of the analysis, the stress in the active region decreased as the pattern density and line width of the dummy metal increased, and it was verified that it was valid compared with the previous study that studied the dishing according to the dummy pattern density and line width of the metal layer. In conclusion, it was confirmed that there is a relationship between dishing and normal stress.

  • PDF

Evaluation of Output Performance of Flexible Thermoelectric Energy Harvester Made of Organic-Inorganic Thermoelectric Films Based on PEDOT:PSS and PVDF Matrix (PEDOT:PSS 및 PVDF 기반의 유-무기 열전 필름으로 제작된 플렉서블 열전 에너지 하베스터의 발전 성능 평가)

  • Yujin Na;Kwi-Il Park
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.295-301
    • /
    • 2023
  • Thermoelectric (TE) energy harvesting, which converts available thermal resources into electrical energy, is attracting significant attention, as it facilitates wireless and self-powered electronics. Recently, as demand for portable/wearable electronic devices and sensors increases, organic-inorganic TE films with polymeric matrix are being studied to realize flexible thermoelectric energy harvesters (f-TEHs). Here, we developed flexible organic-inorganic TE films with p-type Bi0.5Sb1.5Te3 powder and polymeric matrices such as poly(3,4-eethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and poly (vinylidene fluoride) (PVDF). The fabricated TE films with a PEDOT:PSS matrix and 1 wt% of multi-walled carbon nanotube (MWCNT) exhibited a power factor value of 3.96 µW·m-1·K-2 which is about 2.8 times higher than that of PVDF-based TE film. We also fabricated f-TEHs using both types of TE films and investigated the TE output performance. The f-TEH made of PEDOT:PSS-based TE films harvested the maximum load voltage of 3.4 mV, with a load current of 17.4 µA, and output power of 15.7 nW at a temperature difference of 25 K, whereas the f-TEH with PVDF-based TE films generated values of 0.6 mV, 3.3 µA, and 0.54 nW. This study will broaden the fields of the research on methods to improve TE efficiency and the development of flexible organic-inorganic TE films and f-TEH.

Fabrication of Ceramic Filters via Binder Jetting Type 3D Printing Technology (바인더 젯팅 적층제조기술을 활용한 다공성 세라믹필터 제작)

  • Mose Kwon;Jong-Han Choi;Kwang-Taek Hwang;Jung-Hoon Choi;Kyu-Sung Han;Ung-Soo Kim;Jin-Ho Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.285-294
    • /
    • 2023
  • Porous ceramics are used in various industrial applications based on their physical properties, including isolation, storage, and thermal barrier properties. However, traditional manufacturing environments require additional steps to control artificial pores and limit deformities, because they rely on limited molding methods. To overcome this drawback, many studies have recently focused on fabricating porous structures using additive manufacturing techniques. In particular, the binder jet technology enables high porosity and various types of designs, and avoids the limitations of existing manufacturing processes. In this study, we investigated process optimization for manufacturing porous ceramic filters using the binder jet technology. In binder jet technology, the flowability of the powder used as the base material is an important factor, as well as compatibility with the binder in the process and for the final print. Flow agents and secondary binders were used to optimize the flowability and compatibility of the powders. In addition, the effects of the amount of added glass frit, and changes in sintering temperature on the microstructure, porosity and mechanical properties of the final printed product were investigated.