• Title/Summary/Keyword: thermal evaporation deposition

Search Result 173, Processing Time 0.036 seconds

Hole Injection Layer by Ion Beam Assisted Deposition for Organic Electroluminescence Devices

  • Choi, Sang-Hun;Jeong, Soon-Moon;Koo, Won-Hoe;Baik, Hong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1619-1622
    • /
    • 2005
  • The ultra thin hole injection layer (HIL) was deposited on an indium-tin-oxide (ITO) anode by using an ion beam assisted d eposition (IBAD) for the fabrication of an polymeric electroluminescence device for the first time. The device with the HIL deposited by IBAD has higher external quantum efficiency than the device with the HIL by conventional thermal evaporation. It is found that the deposited HIL by IBAD has high surface coverage on ITO anode in a few nm regions because the HIL prepared has high adatom mobility by ion beam energy.

  • PDF

Fabrication of Novel Dual Mode Resonator Using Superconducting Thin Film Grown by Pulsed Laser Deposition (펄스 레이저 증착법에 의한 YBCO 박막증착과 이중모드 공진기의 제작)

  • Park, Joo-Hyung;Lee, Sang-Yeol;Ahn, Dal
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1546-1548
    • /
    • 1998
  • Dual mode ring resonators(DMRR) have been fabricated using laser ablated $YBa_2Cu_3O_{7-x}$ superconducting thin films. The transition temperature of YBCO thin films were 85 - 88 K and the film thicknesses were about 5,000 $\AA$. Dual mode ring resonators were patterned by standard photolithography process and wet-etching. Then two-layer metal thin films (Ti/Ag) have been deposited for the ground plane on the back side of substrate by e-beam and thermal evaporation. The input/output feedline angles of each resonator were $60^{\circ}$, $100^{\circ}$, $180^{\circ}$. A network analyzer was used for testing the performance of the resonators in the frequency range of 6-13 GHz at 77 K.

  • PDF

Catalyst-Free and Large-Area Deposition of Graphitic Carbon Films on Glass Substrates by Pyrolysis of Camphor

  • Nam, Hyobin;Lee, Woong
    • Korean Journal of Materials Research
    • /
    • v.25 no.7
    • /
    • pp.341-346
    • /
    • 2015
  • The feasibility of obtaining graphitic carbon films on targeted substrates without a catalyst and transfer step was explored through the pyrolysis of the botanical derivative camphor. In a horizontal quartz tube, camphor was subjected to a sequential process of evaporation and thermal decomposition; then, the decomposed product was deposited on a glass substrate. Analysis of the Raman spectra suggest that the deposited film is related to unintentionally doped graphitic carbon containing some $sp-sp^2$ linear carbon chains. The films were transparent in the visible range and electrically conductive, with a sheet resistance comparable to that of graphene. It was also demonstrated that graphitic films with similar properties can be reproduciblyobtained, while property control was readily achieved by varying the process temperature.

Efficiency Improvement of the Organic Light-Emitting Diodes depending on Thickness Variation of Hole-Infection Materials (정공 주입 물질 두께 변화에 따른 유기 발광 다이오우드 효율 향상)

  • Kim, Weon-Jong;Lee, Young-Hwan;Cha, Ki-Ho;Lee, Sang-Kyo;Kim, Tae-Wan;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1291-1292
    • /
    • 2006
  • In the structure of ITO/HIL/$Alq_3$/Al device, we investigated an efficiency improvement of the Organic Light-Emitting Diodes depending on thickness variation of hole-injection layer. Using the thermal evaporation in a base vacuum $5{\times}10^{-5}$[Torr], we have measured efficiency after the $Alq_3$ was evaporated to 100 [nm] as a deposition rate $1.5[{\AA}/s]$. In optimal condition, when PTFE thickness increased from 0 to 3.0 [nm], we have obtained that an optimal thickness of PTFE was 2.5 [nm]. And using the PTFE, luminance efficiency and external quantum efficiency of the device were improved by 12.8 times and 11.1 times, respectively.

  • PDF

Preparation of Transparent conductive oxide cathode for Top-Emission Organic Light-Emitting Device by FTS system and RF system

  • Hong, Jeong-Soo;Park, Yong-Seo;Kim, Kyung-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.3
    • /
    • pp.23-27
    • /
    • 2010
  • We prepared Al doped ZnO thin film as a top electrode on a glass substrate with a deposited $Alq_3$ for the top emission organic Light emitting device (TEOLED) with facing target sputtering (FTS) method and radio-frequency (RF) sputtering method, respectively. Before the deposition of AZO thin film, we evaporated the $Alq_3$ on glass substrate by thermal evaporation. And we evaluated the damage of organic layer. As a result, PL intensity of $Alq_3$ on grown by FTS method showed higher than that of grown by RF sputtering method, so we found that the FTS showed the lower damage sputtering than RF sputtering. Therefore, we can expect the FTS method is promising the low-damage sputtering system that can be used as a direct sputtering on the organic layer.

Electrical Characteristics of OLED depending on Hole Transport Layer materials (정공 수송층 재료에 따른 OLED의 전기적 특성)

  • Shim, Sang-Min;Han, Hyeon-Seok;Kim, Won-Jong;Ryu, Boo-Hyung;Lee, Jong-Yong;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1491-1492
    • /
    • 2011
  • In this study, we investigated about the effect of hole transport layer materials(${\alpha}$-NPD, TPD) depending on the electrical properties of organic light emitting diode. In deposition method, we used thermal evaporation and it was a method for performing thin film by attaching vaporizing a molecule to substrate in a high thermal and vaccum. We analyzed luminance, current density, external quantum efficiency and current efficiency in 40 [nm] as optimization thickness of ${\alpha}$-NPD and TPD. In result of experiment, maximum luminance of TPD had 1.1 times higher than ${\alpha}$-NPD, but ${\alpha}$-NPD had luminance, external quantum efficiency, and current efficiency higher than TPD in low operating voltage. Actually, ${\alpha}$-NPD had efficiency higher than TPD in low operating voltage.

  • PDF

Fabrication and Characterization of Ferroelectric PFN Thin Film by Sol-Gel Processing (솔-젤법에 의한 강유전성 PFN 박막의 제조 및 특성평가)

  • 류재율;김병호;임대순
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.6
    • /
    • pp.665-671
    • /
    • 1996
  • Ferroelectric Pb(Fe1/2Nb1/2)O3 thin films were successfully fabricated on ITO/Glass substrate by sol-gel proces-sing and characterized to determine the dielectric and electric properties. Viscosity of PEN sol measured to investigate rheological properties was 3.25 cP which was proper for coating. The sol also showed Newtonian behavior. RTA(Rapid Thermal Annealing) was used for the annealing of the thin film and 1200~1700$\AA$ thick PEN thin films were fabricated by repeating the intermediate and the final annealing. After the deposition of Pt as top electrode by vacuum evaporation dielectric and electric properties were measured. Dielectric properties of FFN thin film were enhanced by increasing the perovskite phase fraction with increasing the annealing temperature. Measured dielectric constant of 1700$\AA$ PFN thin film annealed at $650^{\circ}C$ was 890 at 1kHz Capacitatnce density and dielectric loss were 47 fF/${\mu}{\textrm}{m}$2 and 0.47 respectively. As a result of measuring Curie temperature PFN thin films had Curie point with a rang of 110~12$0^{\circ}C$ and showed broad dielectric peak at that point. Leakage current of the PFN thin films were increased with increasing the annealing tempera-ture.

  • PDF

Investigation on the electromechanical properties of RCE-DR GdBCO CC tapes under transversely applied load

  • Gorospe, Alking B.;Shin, Hyung-Seop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.49-52
    • /
    • 2014
  • REBCO coated conductor (CC) tapes with superior mechanical and electromechanical properties are preferable in applications such as superconducting coils and magnets. The CC tapes should withstand factors that can affect their performance during fabrication and operation of its applications. In coil applications, CC tapes experience different mechanical constraints such as tensile or compressive stresses. Recently, the critical current ($I_c$) degradation of CC tapes used in coil applications due to delamination were already reported. Thermal cycling, coefficient of thermal expansion mismatch among constituent layers, screening current, etc. can induce excessive transverse tensile stresses that might lead to the degradation of $I_c$ in the CC tapes. Also, CC tapes might be subjected to very high magnetic fields that induce strong Lorentz force which possibly affects its performance in coil applications. Hence, investigation on the delamination mechanism of the CC tapes is very important in coiling, cooling, operation and design of prospect applications. In this study, the electromechanical properties of REBCO CC tapes fabricated by reactive co-evaporation by deposition and reaction (RCE-DR) under transversely applied loading were investigated. Delamination strength of the CC tape was determined using the anvil test. The $I_c$ degraded earlier under transverse tensile stress as compared to that under compressive one.

Small Molecular Solar Cells toward Improved Efficiency and Stability

  • Kim, Ji-Hwan;Kim, Hyo-Jeong;Jeong, Won-Ik;Kim, Tae-Min;Lee, Yeong-Eun;Kim, Se-Yong;Kim, Jang-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.73-73
    • /
    • 2011
  • We will report a few methods to improve the efficiency and stability in small molecule based organic solar cells, including the formation of bulk heterojunctions (BHJs) through alternative thermal deposition (ATD), the use of a micro-cavity structure and interface modifications. By ATD which is a simple modification of conventional thermal evaporation, the thicknesses of alternative donor and acceptor layers were precisely controlled down to 0.1 nm, which is critical to form BHJs. The formation of a BHJ in copper(II) phthalocyanine (CuPc) and fullerene (C60) systems was confirmed by AFM, GISAXS and absorption measurements. From analysis of the data, we found that the CuPc|C60 films fabricated by ATD were composed of the nanometer sized disk shaped CuPc nano grains and aggregated C60, which explains the phase separation of CuPc and C60. On the other hand, the co-deposited CuPc:C60 films did not show the existence of separated CuPc nano grains in the CuPc:C60 matrix. The OPV cells fabricated using the ATD method showed significantly enhanced power conversion efficiency compared to the co-deposited OPV cells under a same composition [1]. We will also present by numerical simulation that adoption of microcavity structure in the planar heterojunction can improve the short circuit current in single and tandem OSCs [2]. Interface modifications also allowed us to achieve high efficiency and high stability OSCs.

  • PDF

양산에 적합한 구조의 X-ray 검출기 공정에 대한 연구

  • Gwon, Jun-Hwan;O, Gyeong-Min;Song, Yong-Geun;Kim, Ji-Na;No, Seong-Jin;Nam, Sang-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.265-266
    • /
    • 2012
  • 의료용 X-ray의 발전에 따라, 영상의 Digital화가 필요하게 되었다. Digital 영상 구현을 위해 다양한 형태의 영상 검출기가 개발되었다. 진단 영상의 조건으로는 구현 시간이 빠르고 해상도가 높아야 한다. 조건에 부합하는 Flat panel 형태의 직접방식과 간접방식 검출기의 개발이 주로 이루어졌으며, X-ray 검출 효율이 높고 공간 분해능이 높은 직접 방식의 검출기에 대한 연구가 활발히 진행되고 있다. 기존 직접방식의 X-ray 검출물질로는 A-Se이 이용되었다. 하지만 A-Se의 경우 낮은 원자번호로 인해 X-ray에 대한효율이 낮으며, 제조 공정과 수율의 문제로 인해 대체 물질의 개발과 공정의 개선이 필요하다. 선행 연구를 통해 X-ray 검출물질의 전기적 특성을 파악을 통해 대체 물질로서 가능성을 알아보았다. 본 연구에서는 기존에 제작된 X-ray 검출물질의 상부전극 증착 물질과 증착법 선정에 대한 연구이다. 선행 연구를 통해 선정된 X-ray 검출물질은 HgI2이다. 상, 하부 전극 선택에 있어 HgI2의 일함수 값(4.15eV)을 고려하여 그와 비슷한 일함수 값을 가진 물질로 전기적 장벽을 제거하여야 한다. 따라서, ITO (일함수 4.45eV)와 Au (일함수 5.1eV)을 선택하였다. ITO의 증착으로 이용된 방법으로는 on-axis 형태의 magnetron plasma sputtering을 이용하였으며, Au의 증착으로 이용된 방법은 Thermal evaporation deposition을 이용하였다. plasma sputtering에 이용된 타겟은 In2O3;SnO2 (조성비:90:10wt%)를 사용하였으며, Chamber의 크기는 넓이 456 ${\phi}cm^2$ 높이 25 cm이며, 로 target과 기판과의 거리는 15cm이다. plasma발생에 필요한 가스로는 Ar과 O2를 이용하였다. 고 진공 환경 조성에 이용된 장비로는 Rotary pump와 Turbo molecular pump이다. plasma 발생 전 진공도는 $3.2{\times}10^{-5}$ Torr, 발생 후 진공도는 $5.1{\times}10^{-5}$ Torr이다. plasma 환경이 조성된 후 증착 시간은 1분 30초이다. Au는 순도 99.999%를 이용하였으며, 이용된 금은 1회 증착에 0.3 g을 이용하였다. Chamber의 넓이 1,444 ${\phi}cm^2$이며, 높이 40 cm, boat와 기판과의 거리는 25 cm이다. 고 진공 환경 조성에 이용된 장비로는 Rotary pump와 diffusion pump를 이용하였다. Au의 승화 전 진공도는 $2.4{\times}10^{-5}$ Torr 증착 시 진공도는 $4.2{\times}10^{-5}$ Torr이며, Boat에 가해준 전압, 전류는 0.97 V, 47 A이며, 증착 시간은 1분 30초이다. 광도전체 층에 각각 증착된 전극의 저항을 통해 증착상태를 판단하였다. DMM (Digital Multimeter)로 1 cm 간격으로 측정된 표면의 저항은 ITO 약 $8{\Omega}$, Au 약 $3{\Omega}$으로 전극으로서 이용이 가능한 상태이다. Au와 ITO가 증착된 HgI2 시편의 전기적 특성은 기존에 이용된 X-ray 변환물질의 성능보다 우수하였다. 하지만 Au와 ITO가 각각 증착된 시편의 전기적 특성은 큰 차이를 보이지 않았다. ITO의 경우 진공 상태에서 이용되는 Gas가 이용되며, Plasma 환경 조성 유지가 어려운 점이 있다. Au전극은 증착 환경 조성이 쉽지만, 전극 물질 이용효율이 떨어지는 단점이 있다. 본 연구를 통해 X-ray 변환물질인 HgI2의 전극물질로 Au와 ITO의 이용가능성을 알아보았다. 두 전극으로 제작된 검출기의 성능은 큰 차이 없이 우수하였고, 전기적 장벽 상태가 낮아 높은 검출 효율을 보였다. 상대적으로 Au 전극의 공정이 간단하고 수율이 높다. 하지만 Au Source의 이용 효율이 떨어지는 단점이 있다. 본 연구의 결과를 통해 공정상의 유리함과 Source의 이용효율을 고려한 분석에 대한 연구가 필요할 것으로 사료된다.

  • PDF