• Title/Summary/Keyword: thermal evaporation deposition

Search Result 173, Processing Time 0.03 seconds

A Study on the Development and Application of Thermal Evaporation Source (Thermal Evaporation 증발원 개발 및 응용에 관한 연구)

  • Kim, Kwan-Do
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.19-22
    • /
    • 2020
  • The thermal evaporation source is used to prepare thin films by physical vapor deposition. Materials of metals, organic materials, were tested and explained for thermal evaporation experiments. The developed effusion cell performance depends on the type of deposition material, the size of the crucible, the performance of the reflector, etc. and the proper conditions were found by producing, comparing and analyzing several sets of effusion cell to quantitatively evaluate the performance of the cell. The effusion cell for thermal evaporation source is used to prepare thin films of Ag, Cu, Mg.

Film Properties of TiO2 Made by Activated Reactive Evaporation (활성화 반응으로 제작된 TiO2의 박막특성)

  • Park, Yong-Gwon;Choi, Jae-Ha
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.3
    • /
    • pp.151-154
    • /
    • 2001
  • $TiO_2$ thin film has wide application because of its high capacitanca, reflection, and good transmissivity in visible range. $TiO_2$ thin film can be made by thermal deposition method, reactive evaporation method, activated reactive evaporation(ARE) method. In the case of thermal deposition, the oxygen deficiency can occur because the melting point of Ti is very high. While in the case of reactive evaporation, high density $TiO_2$ can not be made, because reactive gas($O_2$) and evaporated material(Ti) are not fully combined, activated reactive evaporation, $TiO_2$ is easily deposited at lower gas pressure compared with reactive evaporation because the ionized reactive gas is made by plasma. Therefore, activated reactive evaporation is very useful to deposit the material having the high melting point. In this work, we formed $TiO_2$ thin film by activated reactive evaporation method. The surface of $TiO_2$ thin film was analyzed by X-ray photoelectron spectroscopy. The surface morphology which was analyzed by atomic force microscopy(AFM) shows that feature of the film surface is uniform. The dielectric capacitance, withstanding voltage were $600{\mu}F/cm^2$, 0.4V respectively. In further work, we can increase the withstanding voltage by improving the deposition parameter of substrates.

  • PDF

The Mechanism of Gold Deposition by Thermal Evaporation

  • Mark C. Barnes;Kim, Doh-Y.;Nong M. Hwang
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.127-142
    • /
    • 2000
  • The charged cluster model states that chemical vapor deposition (CVD) begins with gas phase nucleation of charged clusters followed by cluster deposition on a substrate surface to form a thin film. A two-chambered CVD system, separated by a 1-mm orifice, was used to study gold deposition by thermal evaporation in order to determine if the CCM applies in this case. At a filament temperature of 1523 and 1773 K, the presence of nano-meter sized gold clusters was found to be positive and the cluster size and size distribution increased with increasing temperature. Small clusters were found to be amorphous and they combined with clusters already deposited on a substrate surface to form larger amorphous clusters on the surface. This work revealed that gold thin films deposited on a mica surface are the result of the sticking of 4-10 nm clusters. The topography of these films was similar to those reported previously under similar conditions.

  • PDF

$CeO_2$ Single Buffer Deposition on RABiTS for SmBCO Coated Conductor

  • Kim, T.H.;Kim, H.S.;Ha, H.S.;Yang, J.S.;Lee, N.J.;Ha, D.W.;Oh, S.S.;Song, K.J.;Jung, Y.H.;Pa, K.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.180-181
    • /
    • 2006
  • As a rule, high temperature superconducting coated conductors have multi-layered buffers consisting of seed, diffusion barrier and cap layers. Multi-buffer layer deposition requires longer fabrication time. This is one of main reasons which increases fabrication cost Thus, single buffer layer deposition seems to be important for practical coated conductor process. In this study, a single layered buffer deposition of $CeO_2$ for low cost coated conductors has been tried using thermal evaporation technique 100nm-thick $CeO_2$ layers deposited by thermal evaporation were found to act as a diffusion layer. $0.4{\mu}m$-thick SmBCO superconducting layers were deposited by thermal co-evaporation on the $CeO_2$ buffered Ni-W substrate. Critical current of 118A/$cm^2$ was obtained for the SmBCO coated conductors.

  • PDF

Study on CeO2 Single Buffer on RABiTS for SmBCO coated Conductor (SmBCO 초전도 층착을 위한 RABiTS상의 CeO2 단일 버퍼 연구)

  • Kim, Tae-Hyung;Kim, Ho-Sup;Lee, Nam-Jin;Ha, Hong-Soo;Ko, Rock-Kil;Ha, Dong-Woo;Song, Kyu-Jeong;Oh, Sang-Soo;Park, Kyung-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.546-549
    • /
    • 2007
  • As a rule, high temperature superconducting coated conductors have multi-layered buffers consisting of seed, diffusion barrier and cap layers. Multi-buffer layer deposition requires longer fabrication time. This is one of main reasons which increases fabrication cost. Thus, single buffer layer deposition seems to be important for practical coated conductor process. In this study, a single layered buffer deposition of $CeO_2$ for low cost coated conductors has been tried using thermal evaporation technique. 100 nm-thick $CeO_2$ layers deposited by thermal evaporation were found to act as a diffusion layer. $1\;{\mu}m-thick$ SmBCO superconducting layers were deposited by thermal co-evaporation on the $CeO_2$ buffered Ni-5%W substrate. Critical current of 90 A/cm was obtained for the SmBCO coated conductors.

A Study on Development of PLD Process for PM OLED Device Manufacture (PM OLED 디바이스 제작을 위한 PLD 공정 개발에 관한 연구)

  • Lee, Eui-Sik;Lee, Byoung-Wook;Kim, Chang-Kyo;Hong, Jin-Su;Park, Sung-Hoon;Moon, Soon-Kwun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.264-266
    • /
    • 2005
  • Manufacture of OLED device used thermal evaporation method. However thermal evaporation method has many defect as thermal damage of substrate, difficult of dopant rate control and low utilization of organic materials. so we suggest PLD(Pulsed Laser Deposition) method that solution of these problems. PLD method has many advantage as without thermal damage, easy indicate of deposition rate per one pulse and good utilization of organic materials. In this paper we apply the PLD method for manufacture of device so we present high efficiency device manufacture using PLD method that has good deposition uniformity, surface rough and deposition rate.

  • PDF

APPLICATION OF RADIO-FREQUENCY (RF) THERMAL PLASMA TO FILM FORMATION

  • Terashima, Kazuo;Yoshida, Toyonobu
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.357-362
    • /
    • 1996
  • Several applications of radio-frequency (RF) thermal plasma to film formation are reviewed. Three types of injection plasma processing (IPP) technique are first introduced for the deposition of materials. Those are thermal plasma chemical vapor deposition (CVD), plasma flash evaporation, and plasma spraying. Radio-frequency (RF) plasma and hybrid (combination of RF and direct current(DC)) plasma are next introduced as promising thermal plasma sources in the IPP technique. Experimental data for three kinds of processing are demonstrated mainly based on our recent researches of depositions of functional materials, such as high temperature semiconductor SiC and diamond, ionic conductor $ZrO_2-Y_2O_3$ and high critical temperature superconductor $YBa_2Cu_3O_7-x$. Special emphasis is given to thermal plasma flash evaporation, in which nanometer-scaled clusters generated in plasma flame play important roles as nanometer-scaled clusters as deposition species. A novel epitaxial growth mechanism from the "hot" clusters namely "hot cluster epitaxy (HCE)" is proposed.)" is proposed.osed.

  • PDF

YBCO - film production by thermal co-evaporation for microwave and electrical power applications

  • Prusseit, W.;Semerad, R.
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.145-145
    • /
    • 2000
  • Large area YBCO - films are series produced by thermal co-evaporation using a deposition scheme known as Garching process, which allows intermittent oxygen supply in a high vacuum ambient by an oxygen cup spaced closely underneath the moving substrates. The deposition area of 9" diameter is capable to handle very large wafers up to 8" diam. or numerous smaller wafers. The large distance between substrates and boat sources and an elaborate heater design guarantee excellent film uniformity over the entire deposition area. YBCO - films deposited by this technique are commercially fabricated for a variety of applications - the most prominent are resistive fault current limiters and microwave filters for mobile or satellite communications. IMUX and OMUX - filters are currently space qualined by Robert Bosch GmbH and are expected to be launched and installed on an experimental platform of the international space station ALPHA in 2001. Both of the above applications require quite different film specifications on the one hand, but at the same time extremely high uniformity and reproducibility on the other hand, since hundreds of YBCO - films are combined to large systems or have to be approved for manned space missions. The success of such projects is direct evidence that the technique of thermal evaporation is readily capable to meet these high demands and has become the major deposition technique to support the emerging HTS market.

  • PDF

Deposition of Yttria Stabilized Zirconia by the Thermal CVD Process

  • In Deok Jeon;Latifa Gueroudji;Nong M. Hwang
    • The Korean Journal of Ceramics
    • /
    • v.5 no.2
    • /
    • pp.131-136
    • /
    • 1999
  • Yttria stabilized zirconia(YSZ) films were deposited on porous NiO substrates and quartz plates by the thermal CVD using $ZrCl_4, YCl_3$ as precursors, and $O_2$ as a reactive gas at atmospheric pressure. The evaporation temperature of $ZrCl_4$ was varied from $250^{\circ}C$ to $550^{\circ}C$ while the temperatures of $YCl_3$ and the substrate were varied from $1000^{\circ}C$ to $1030^{\circ}C$. As the evaporation temperature of $ZrCl_4$ increased, the deposition rate of $ZrO_2$ decreased, contrary to our expectation. As a result of the decreased deposition rate of $ZrO_2$, the yttria content increase. The high evaporation temperature of $ZrCl_4$ makes the well-faceted crystal while the low evaporation temperature leads to the cauliflower-shaped structure. The dependence of the evaporation temperature on the growth rate and the morphological evolution was interpreted by the charged cluster model.

  • PDF