• 제목/요약/키워드: thermal elasticity

검색결과 201건 처리시간 0.024초

Effect of Elevated Temperature on Mechanical Properties of Limestone, Quartzite and Granite Concrete

  • Tufail, Muhammad;Shahzada, Khan;Gencturk, Bora;Wei, Jianqiang
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권1호
    • /
    • pp.17-28
    • /
    • 2017
  • Although concrete is a noncombustible material, high temperatures such as those experienced during a fire have a negative effect on the mechanical properties. This paper studies the effect of elevated temperatures on the mechanical properties of limestone, quartzite and granite concrete. Samples from three different concrete mixes with limestone, quartzite and granite coarse aggregates were prepared. The test samples were subjected to temperatures ranging from 25 to $650^{\circ}C$ for a duration of 2 h. Mechanical properties of concrete including the compressive and tensile strength, modulus of elasticity, and ultimate strain in compression were obtained. Effects of temperature on resistance to degradation, thermal expansion and phase compositions of the aggregates were investigated. The results indicated that the mechanical properties of concrete are largely affected from elevated temperatures and the type of coarse aggregate used. The compressive and split tensile strength, and modulus of elasticity decreased with increasing temperature, while the ultimate strain in compression increased. Concrete made of granite coarse aggregate showed higher mechanical properties at all temperatures, followed by quartzite and limestone concretes. In addition to decomposition of cement paste, the imparity in thermal expansion behavior between cement paste and aggregates, and degradation and phase decomposition (and/or transition) of aggregates under high temperature were considered as main factors impacting the mechanical properties of concrete. The novelty of this research stems from the fact that three different aggregate types are comparatively evaluated, mechanisms are systemically analyzed, and empirical relationships are established to predict the residual compressive and tensile strength, elastic modulus, and ultimate compressive strain for concretes subjected to high temperatures.

Effect of Phenyl Vinyl Methyl Silicone (PVMQ) on Low Temperature Sealing Performance of Fluorosilicone Composites

  • Lee, Jin Hyok;Bae, Jong Woo;Choi, Myoung Chan;Yun, Yu-Mi;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • 제56권4호
    • /
    • pp.209-216
    • /
    • 2021
  • In this study, we observed the mechanical properties, thermal stability, and low temperature sealing performance of fluorosilicone elastic composites. When the blend ratio of Phenyl vinyl methyl silicone (PVMQ) was increased, the tensile strength, modulus at 100%, and compression set were decreased. The thermal stability of fluorosilicone elastic composites showed a similar tendency. These were caused by poorer green strength of PVMQ than Fluorosilicone rubber (FVMQ). The change in the tensile strength and elongation at -40℃ showed a decreasing tendency with increasing PVMQ blend ratio. By increasing the PVMQ blend ratio, low-temperature performance was improved. The Dynamic mechanical analysis (DMA) results showed that Tg was decreased and low-temperature performance was improved with increasing PVMQ blend ratio. However tanδ was decreased becaused of the poor green strength and elasticity of PVMQ. From a hysteresis loss at -40℃, the hysteresis loss value was increased and fluorosilicone elastic composites showed the decreasing tendency of elasticity with increasing PVMQ blend ratio. From the TR test, TR10 was decreased with increasing PVMQ blend ratio. FS-4 (45% PVMQ blended composites) showed a TR10 of -68.0℃ that was 5℃ lower than that of FS-1 (100% FVMQ). The gas leakage temperature was decreased with increasing PVMQ blend ratio. The gas leakage temperature of FS-4 was -69.2℃ that was 5℃ lower than that of FS-1. Caused by the polymer chain started to transfer from a glassy state to a rubbery state and had a mobility of chain under Tg, the gas leakage temperature showed a lower value than Tg. The sealing performance at low temperature was dominated by Tg that directly affected the mobility of the polymer chain.

초정밀 가공기용 마이크로 스테이지의 힌지 형상과 재질 변화에 따른 안정성 해석 (Stability Analysis of a Micro Stage for Micro Cutting Machine with Various Hinge Type and Material Transformation)

  • 김재열;곽이구;유신
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.233-240
    • /
    • 2003
  • Recently, the world are preparing for new revolution, called as If (Information Technology), NT (Nano-Technology), and BT (Bio-Technology). NT can be applied to various fields such as semiconductor-micro technology. Ultra precision processing is required for NT in the field of mechanical engineering. Recently, together with radical advancement of electronic and photonics industry, necessity of ultra precision processing is on the increase for the manufacture of various kernel parts. Therefore, in this paper, stability of ultra precision cutting unit is investigated, this unit is the kernel unit in ultra precision processing machine. According to alteration of shape and material about hinge, stability investigation is performed. In this paper, hinge shapes of micro stage in UPCU(Ultra Precision Cutting Unit) are designed as two types, where, hinge shapes are composed of round and rectangularity. Elasticity and strength are analyzed about micro stage, according to hinge shapes, by FE analysis. Micro stage in ultra precision processing machine has to keep hinge shape under cutting condition with 3-component force (cutting component, axial component, radial component) and to reduce modification against cutting force. Then we investigated its elasticity and its strength against these conditions. Material of micro stage is generally used to duralumin with small thermal deformation. But, stability of micro stage is investigated, according to elasticity and strength due to various materials, by FE analysis. Where, Used materials are composed of aluminum of low strength and cooper of medium strength and spring steel of high strength. Through this stability investigation, trial and error is reduced in design and manufacture, at the same time, we are accumulated foundation data for unit control.

소성 점토의 침탄에 따른 동결융해 저항성 및 적외선 방사특성 연구 (A Study on the Infrared Emission Properties and Freeze-thaw Resistance for Calcined Clay by Carburization Treatment)

  • 김기호;김상명;강병철
    • 한국세라믹학회지
    • /
    • 제45권7호
    • /
    • pp.387-394
    • /
    • 2008
  • The Physical property changes of calcined clay by carburization were investigated studied. The carburization mechanism is the penetration of carbon which occurred during incomplete fuel combustion into crevice of clay structure. The experiments for elasticity and freeze-thaw resistance were conducted, and the results can be summarized as follows: Dynamic modulus of elasticity and also freeze-thaw resistance of calcined clay by carburization treatment increased more than 92% after testing 300 cycle, which was more improved than 88% of calcined clay. Therefore, it can decrease the possibility of winter-sowing, which is one the weakness of calcined clay. It is on the basis of the fact that the porosity of calcined clay by carburization treatment is about 12%, which indicates smaller pore spaces comparing with the 14% of porosity of calcined clay and those values were calculated by apparent porosity show and also supported by SEM images. Infrared emissivity of calcined clay by carburization treatment and calcined clay were respectively 0.92 and 0.9l at $80^{\circ}C$. However, those values were 0.91 and 0.88 at $200^{\circ}C$, which means infrared emissivity of calcined clay by carburization treatment shows 3.6% higher than the calcined clay. Moreover, within the wavelength range from 3 to $7\;{\mu}m$, while the calcined clay had low infrared emissivity, the calcined clay by carburization treatment had increased infrared emissivity. It is inferred that it was affected by carbon element that has high infrared absorptivity within this wavelength range.

The Classification of Manufacturing Work Processes to Develop Functional Work Clothes - With a Reference to the Automobile, Machine and Shipbuilding Industries -

  • Park, Ginah;Park, Hyewon;Bae, Hyunsook
    • 패션비즈니스
    • /
    • 제16권6호
    • /
    • pp.21-35
    • /
    • 2012
  • In consideration of the injuries and deaths occurring at manufacturing sites due to the use of inappropriate work clothes or safety devices, this study aims to categorize manufacturing work processes to develop functional work clothes for heavy industries including the automobile, machine and shipbuilding industries in South Korea. Defining the features of the work environments and work postures of these industries provided for a categorization of the work processes which would enable the development of suitable work clothes for each work process' category. The results of the study based on a questionnaire survey are as follows: Work process category 1, including steel panel pressing and auto body assembly, final inspection (in automobile) and inspection (in machine), requires work clothes with upper body and arm mobility and performance to protect from the toxic fume factor. Work process category 2, consisting of welding (in automobile), cutting-and-forming (in machine) and attachment-and-construction (in shipbuilding), requires clothing elasticity, durability and heat and fire resistance. Work process category 3 comprising welding and grinding in the machine and shipbuilding industries, requires work clothes' tear resistance and elasticity, particularly for lateral bending mobility, and work clothes' sleeves' and pants' hemlines with sealed designs to defend against iron filing penetration, as well as incombustible and heat-resistant material performance. Finally, work process category 4, including painting in machine and shipbuilding, requires work clothes with waterproofing, air permeability, thermal performance, elasticity, durability and abrasion resistance.

휘담식 진동기 골반수기로 개선된 급성 요통 증후군으로 인한 보행장애 증례 (A Case Report of Gait Disturbance due to Acute Low Back Pain Syndrome improved with Whidam's Vibrator Pelvic Sugi Therapy)

  • 정재훈;필감매;나삼식
    • 대한의료기공학회지
    • /
    • 제21권1호
    • /
    • pp.1-12
    • /
    • 2022
  • Objective : The purpose of this study is to report the results of treating patients with acute low back pain syndrome who are difficult to walk with Whidam's Vibrator Pelvic Sugi Therapy. Methods : We used combinations of korean medicine such as herbal medicine, acupuncture, cupping therapy, and thermal therapy. At the same time, the patient was treated with Whidam's Vibrator Pelvic Sugi Therapy. The first period of hospitalization was 14 days and the second period was 54 days. At the second hospitalization, back pain recurred and was unable to walk. At the first hospitalization, L5-S1 HIVD and L4-5 Mild HIVD were diagnosed on lumbar MRI, and there was no abnormality in blood tests. Results : By relieving muscle tension and restoring the weakened muscle elasticity with herbal treatment and Whidam's Vibrator Pelvic Sugi Therapy, back pain decreased and the inability to walk gradually improved, making it possible to walk on its own. Conclusions : The results of standing and walking on one's own were obtained by relieving muscle tension and restoring weakened muscle elasticity in acute back pain syndrome with gait disturbance diagnosed with lumbar herniated intervertebral disc through korean medicine treatment and Whidam's Vibrator Pelvic Sugi Therapy. Whidam's Vibrator Pelvic Sugi Therapy is thought to help acute back pain by restoring muscle elasticity and strengthening muscle strength. In the future, it is expected that additional clinical studies will be conducted on various pain diseases with Whidam's Vibrator Pelvic Sugi Therapy.

A damage model predicting moderate temperature and size effects on concrete in compression

  • Hassine, Wiem Ben;Loukil, Marwa;Limam, Oualid
    • Computers and Concrete
    • /
    • 제23권5호
    • /
    • pp.321-327
    • /
    • 2019
  • Experimental isotherm compressive tests show that concrete behaviour is dependent on temperature. The aim of such tests is to reproduce how concrete will behave under environmental changes within a moderate range of temperature. In this paper, a novel constitutive elastic damage behaviour law is proposed based on a free energy with an apparent damage depending on temperature. The proposed constitutive behaviour leads to classical theory of thermo-elasticity at small strains. Fixed elastic mechanical characteristics and fixed evolution law of damage independent of temperature and the material volume element size are considered. This approach is applied to compressive tests. The model predicts compressive strength and secant modulus of elasticity decrease as temperature increases. A power scaling law is assumed for specific entropy as function of the specimen size which leads to a volume size effect on the stress-strain compressive behaviour. The proposed model reproduces theoretical and experimental results from literature for tempertaures ranging between $20^{\circ}C$ and $70^{\circ}C$. The effect of the difference in the coefficient of thermal expansion between the mortar and coarse aggregates is also considered which gives a better agreement with FIB recommendations. It is shown that this effect is of a second order in the considered moderate range of temperature.

Ultrasonic waves in a single walled armchair carbon nanotube resting on nonlinear foundation subjected to thermal and in plane magnetic fields

  • Selvamani, Rajendran;Jayan, M. Mahaveer Sree;Ebrahimi, Farzad
    • Coupled systems mechanics
    • /
    • 제10권1호
    • /
    • pp.39-60
    • /
    • 2021
  • The present paper is concerned with the study of nonlinear ultrasonic waves in a magneto thermo (MT) elastic armchair single-walled carbon nanotube (ASWCNT) resting on polymer matrix. The analytical formulation is developed based on Eringen's nonlocal elasticity theory to account small scale effect. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been analyzed numerically by using the nonlinear foundations supported by Winkler-Pasternak model. The solution is obtained by ultrasonic wave dispersion relations. Parametric work is carried out to scrutinize the influence of the non local scaling, magneto-mechanical loadings, foundation parameters, various boundary condition and length on the dimensionless frequency of nanotube. It is noticed that the boundary conditions, nonlocal parameter, and tube geometrical parameters have significant effects on dimensionless frequency of nano tubes. The results presented in this study can provide mechanism for the study and design of the nano devices like component of nano oscillators, micro wave absorbing, nano-electron technology and nano-electro- magneto-mechanical systems (NEMMS) that make use of the wave propagation properties of armchair single-walled carbon nanotubes embedded on polymer matrix.

안마 및 발열기능의 스마트 조끼 개발과 성능 및 만족도 평가 (Development and Evaluation of Wearable Device with Heat and Massage Function)

  • 노의경;윤미경
    • 한국의류산업학회지
    • /
    • 제22권5호
    • /
    • pp.676-685
    • /
    • 2020
  • This study developed smart vests with heat and massage functions that changed patterns, designs, materials, etc., and evaluated their functions and satisfaction. A knitted fabric with good elasticity and a heating lining were used, and in consideration of this, the final vest pattern fitted to the upper body was completed. A heat pad was attached to the back, and 6 vibration motors were attached to the trapezius muscle. The controller was placed on the left chest for easy operation, and the battery was stored in an inner pocket under the controller. The heating effect of the smart vest, the location of the devices, and the ease of operation were excellent. When the massage function was operated, the thermal comfort was increased compared to when the massage function was not operated, and the high thermal comfort was perceived by the operation of heat and heat+massage function. Due to the battery, the weight, irritating contact of devices and wearing sensation decreased, but there was no reduction in wearing sensation due to heat and vibration devices. The greater the satisfaction with the massage function, thermal comfort, fit, appearance and weight, the greater the product satisfaction.

복합 재료로 구성된 축대칭 원판에서의 열응력 (Thermal Stresses in a Bimaterial Axisymmetric Disk-Approximate and Exact Solutions)

  • 정철섭;김기석
    • 전산구조공학
    • /
    • 제8권1호
    • /
    • pp.173-186
    • /
    • 1995
  • 2가지 이상의 재질로 결합된 구조물이 온도 변화를 받으면 열응력이 발생한다. 이러한 응력은 재질간의 열팽창계수가 서로 상이하여 생긴다. 본 논문에서는 균일한 온도변화를 받는 복합 재료로 이루어진 축대칭 원판(disk)에 대한 응력상태를 구하는 공식을 유도하였다. 먼저, 재료역학원리를 이용하여 근사해를 구한 후, Eigenfunction series를 전개하여 탄성학적인 정확해(Exact Solution)를 구하였다. 또한 정확해는 유한요소법으로 구한 해와 비교하였다. 상기 근사해로는 연계면에서의 응력분포를 예측하는 데 어려움이 있었으나, 정확해는 유한요소법으로 구한 결과와 대체로 일치하고 있어 응력분포를 충분히 예측할 수 있었다. 따라서, 본 논문에서 구한 정확해(Exact Solution) 공식은 복합재료로 구성된 구조물의 연계면에서의 응력분포를 결정하는 데 유용하다.

  • PDF