• Title/Summary/Keyword: thermal effects

Search Result 4,490, Processing Time 0.029 seconds

Analysis of the Relationship between Three-Dimensional Built Environment and Urban Surface Temperature (도시의 3차원 물리적 환경변수와 지표온도의 관계 분석)

  • Li, Yige;Lee, Sugie;Han, Jaewon
    • Journal of Korea Planning Association
    • /
    • v.54 no.2
    • /
    • pp.93-108
    • /
    • 2019
  • This study examines the relationship between three-dimensional urban built environment and urban surface temperature using LANDSAT 8 satellite image data in Seoul city. The image was divided into 600m×600m grid units as an unit of analysis. Due to the high level of spatial dependency in surface temperature, this study uses spatial statistics to take into account spatial auto-correlation. The spatial error model shows the best goodness of fit. The analysis results show that the three-dimensional built environment and transport environment as well as natural environment have statistically significant associations with surface temperature. First, natural environment variables such as green space, streams and river, and average elevation show statistically significant negative association with surface temperature. Second, the building area shows a positive association with surface temperature. In addition, while sky view factor (SVF) has a positive association with surface temperature, surface roughness (SR) shows a negative association with it. Third, transportation related variables such as road density, railway density, and traffic volume show positive associations with surface temperature. Moreover, this study finds that SVF and SR have different effects on surface temperature in regard to the levels of total floor areas in built environment. The results indicate that interactions between floor area ratio (FAR) and three-dimensional built environmental variables such as SVF and SR should be considered to reduce urban surface temperature.

Comparative Study of Design Loads for the Structural Design of Titanium Leisure Boat (티타늄합금 레저보트의 구조설계를 위한 설계하중 비교연구)

  • Yum, Jae-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.733-738
    • /
    • 2021
  • Recently, people's interest in marine leisure has been increasing, and research and development on leisure boats are actively being carried out to pioneer overseas markets. These days, the materials used for leisure boats are fiber-reinforced plastic (FRP) and aluminum alloy. However, FRP is hygroscopic and causes environmental problems, and aluminum alloy has high thermal conductivity and fire susceptibility. Therefore, titanium alloy is being adopted as a material for leisure boats instead. In this study, hull thicknesses and design pressures were calculated while considering dynamic effects for titanium boats. Four sets of rules and regulations were used: ISO 12215-5, RINA Pleasure Yacht, LR Special Service Craft, and KR High-speed Light Craft. The maximum bottom slamming loads were in the order of ISO, KR, LR, and RINA, and the required hull thicknesses were in the same order. This research might be helpful for understanding the rules, regulations, and overseas export of leisure boats.

Analyses of Nano Epoxy-Silica Degradation in LEO Space Environment (저궤도 우주환경에서 에폭시-실리카 나노 복합소재의 열화거동 분석)

  • Jang, Seo-Hyun;Han, Yusu;Hwang, Do Soon;Jung, Joo Won;Kim, Yeong Kook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.945-952
    • /
    • 2020
  • In this study, the effects of Low Earth Orbit(LEO) environments on the degradation behavior of epoxy nano silica composite materials were investigated. The nanocomposite materials containing silica particles in different weight ratios of 10% and 18% were prepared and degraded in a LEO simulator to compare with the neat epoxy cases. Thermogravimetric analysis (TGA) was performed on the degraded nanocomposites and the activation energies were calculated by Friedman method, Flynn-Wall-Ozawa (FWO) method, Kissinger method, and DAEM (Distributed Activation Energy Method) based on the iso-conversional method. As the results, for the neat epoxy sample cases, it was found that the average activation energy was increased as the degradation was progressed. When the nano particles were mixed, however, the energy increased to the 15 environmental test cycles, and decreased afterwards, meaning that the particle mixture contributed adversely to the thermal degradation. Discussions on the results of the different calculation methods were also given.

Finite Element Analysis of Slender Reinforced Concrete Columns Subjected to Eccentric Axial Loads and Elevated Temperature (고온과 편심 축하중을 받는 세장한 철근 콘크리트 기둥의 유한요소해석)

  • Lee, Jung-Hwan;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.159-166
    • /
    • 2022
  • In this study, slender reinforced concrete columns subjected to high temperatures and eccentric axial loads are evaluated by finite element analysis employing Abaqus (a finite element analysis program). Subsequently, the analysis results are compared and assessed. The sequentially coupled thermal stress analysis provided by Abaqus was employed to reflect the condition of an axially loaded column exposed to fire. First, heat transfer analysis was performed on the column cross-section. After verifying the results, another analysis was conducted: the cross-section was transformed into a three-dimensional element and then structural analyzed. In the analysis process, the column was modeled by accounting for the effects of tension stiffening and initial imperfection that could affect convergence and accuracy. The analysis results were compared with 74 experimental records, and an average error of 6% was observed based on the fire exposure and resistance. The foregoing indicates that the fire resistance performance of reinforced concrete columns can be predicted through finite element analysis.

A Consideration on the Causes of 22.9kV Cable Terminal Burning Accident (22.9kV 케이블 단말 부위 소손 사고의 원인에 관한 고찰)

  • Shim, Hun
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.2
    • /
    • pp.7-12
    • /
    • 2022
  • The main cause of cable accidents is the accelerated deterioration of the cable itself or internal and external electrical, mechanical, chemical, thermal, moisture intrusion, etc., which reduces insulation performance and causes insulation breakdown, leading to cable accidents. Insulation deterioration can occur even when there is no change in the appearance of the cable, so there is a difficulty in preventing cable accidents due to insulation deterioration. Since cable accidents can occur in areas with poor insulation due to the effects of overvoltage and overcurrent, it is necessary to comprehensively analyze transformers and circuit breakers, and ground faults caused by phase-to-phase imbalance. Ground fault accidents due to insulation breakdown of cables can occur due to defects in the cable itself and poor cable construction, as well as operational influences, arcs during operation of electrical equipment (switchers, circuit breakers, etc.). analysis is needed. This study intends to examine the causes of cable accidents through analysis of cable accidents that occurred in a manufacturing factory.

Anti-nociceptive effects of dual neuropeptide antagonist therapy in mouse model of neuropathic and inflammatory pain

  • Kim, Min Su;Kim, Bo Yeon;Saghetlians, Allen;Zhang, Xiang;Okida, Takuya;Kim, So Yeon
    • The Korean Journal of Pain
    • /
    • v.35 no.2
    • /
    • pp.173-182
    • /
    • 2022
  • Background: Neurokinin-1 (NK1) and calcitonin gene-related peptide (CGRP) play a vital role in pain pathogenesis, and these proteins' antagonists have attracted attention as promising pharmaceutical candidates. The authors investigated the anti-nociceptive effect of co-administration of the CGRP antagonist and an NK1 antagonist on pain models compared to conventional single regimens. Methods: C57Bl/6J mice underwent sciatic nerve ligation for the neuropathic pain model and were injected with 4% formalin into the hind paw for the inflammatory pain model. Each model was divided into four groups: vehicle, NK1 antagonist, CGRP antagonist, and combination treatment groups. The NK1 antagonist aprepitant (BIBN4096, 1 mg/kg) or the CGRP antagonist olcegepant (MK-0869, 10 mg/kg) was injected intraperitoneally. Mechanical allodynia, thermal hypersensitivity, and anxiety-related behaviors were assessed using the von Frey, hot plate, and elevated plus-maze tests. The flinching and licking responses were also evaluated after formalin injection. Results: Co-administration of aprepitant and olcegepant more significantly alleviated pain behaviors than administration of single agents or vehicle, increasing the mechanical threshold and improving the response latency. Anxiety-related behaviors were also markedly improved after dual treatment compared with either naive mice or the neuropathic pain model in the dual treatment group. Flinching frequency and licking response after formalin injection decreased significantly in the dual treatment group. Isobolographic analysis showed a meaningful additive effect between the two compounds. Conclusions: A combination pharmacological therapy comprised of multiple neuropeptide antagonists could be a more effective therapeutic strategy for alleviating neuropathic or inflammatory pain.

A Study on Thermal Satisfaction of Domestic Heat Wave Reduction Facilities (국내 폭염 저감 시설의 온열 만족도에 대한 연구)

  • Jun, Yong-Joon;Park, Lyool;Park, Kyung-Soon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • As abnormal climates occur due to the increase in greenhouse gases at home and abroad, various problems such as human casualties, crop damage, energy depletion, and economic loss due to heat diseases, which are one of the extreme climate phenomena, are following one after another. In response, the government has established the 'Climate Crisis Response Special Committee' since 2018, when it recorded the greatest damage in history due to heat waves, and has been carrying out budget formation and reform of laws and systems every year to respond to heat waves. However, in relation to the heat wave damage reduction facility that is being expanded with a large budget, there is no prior research related to the degree of heat loss due to the use of the facility, the difference in effects between specific groups, and the economic effect that comes back compared to the invested budget. Therefore, from a midto long-term perspective, it is expected that it will be difficult to establish a clear direction for policy making. Therefore, in this study, representative facilities were selected according to the principle of heat reduction among the currently expanded heat damage reduction facilities, and a questionnaire survey was conducted for users of each reduction facility (waterfall, awning, pond, and elastic pavement). Accordingly, the change in the sense of heat according to the use of the heat damage reduction facility was checked, and the change in the sense of heat according to the group characteristics (gender, age, metabolic rate) was analyzed to examine the characteristics of the relationship between the facility and the users.

Preparation of Nanomaterial Wettable Powder Formulations of Antagonistic Bacteria from Phellodendron chinense and the Biological Control of Brown Leaf Spot Disease

  • Zeng, Yanling;Liu, Han;Zhu, Tianhui;Han, Shan;Li, Shujiang
    • The Plant Pathology Journal
    • /
    • v.37 no.3
    • /
    • pp.215-231
    • /
    • 2021
  • Brown leaf spot disease caused by Nigrospora guilinensis on Phellodendron chinense occurs in a large area in Dayi County, Chengdu City, Sichuan Province, China each year. This outbreak has severely reduced the production of Chinese medicinal plants P. chinense and caused substantial economic losses. The bacterial isolate JKB05 was isolated from the healthy leaves of P. chinense, exhibited antagonistic effects against N. guilinensis and was identified as Bacillus megaterium. The following fermentation medium and conditions improved the inhibitory effect of B. megaterium JKB05 on N. guilinensis: 2% glucose, 0.1% soybean powder, 0.1% KCl, and 0.05% MgSO4; initial concentration 6 × 106 cfu/ml, and a 42-h optimal fermentation time. A composite of 0.1% nano-SiO2 JKB05 improved the thermal stability, acid-base stability and ultraviolet resistance by 16%, 12%, and 38.9%, respectively, and nano-SiO2 was added to the fermentation process. The best formula for the wettable powder was 35% kaolin, 4% polyethylene glycol, 8% Tween, and 2% humic acid. The following quality test results for the wettable powder were obtained: wetting time 87.0 s, suspension rate 80.33%, frequency of microbial contamination 0.08%, pH 7.2, fineness 95.8%, drying loss 1.47%, and storage stability ≥83.5%. A pot experiment revealed that the ability of JKB05 to prevent fungal infections on P. chinense increased considerably and achieved levels of control as high as 94%. The use of nanomaterials significantly improved the ability of biocontrol bacteria to control this disease.

Experimental and numerical FEM of woven GFRP composites during drilling

  • Abd-Elwahed, Mohamed S.;Khashaba, Usama A.;Ahmed, Khaled I.;Eltaher, Mohamed A.;Najjar, Ismael;Melaibari, Ammar;Abdraboh, Azza M.
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.503-522
    • /
    • 2021
  • This paper investigates experimentally and numerically the influence of drilling process on the mechanical and thermomechanical behaviors of woven glass fiber reinforced polymer (GFRP) composite plate. Through the experimental analysis, a CNC machine with cemented carbide drill (point angles 𝜙=118° and 6 mm diameter) was used to drill a woven GFRP laminated squared plate with a length of 36.6 mm and different thicknesses. A produced temperature during drilling "heat affected zone (HAZ)" was measured by two different procedures using thermal IR camera and thermocouples. A thrust force and cutting torque were measured by a Kistler 9272 dynamometer. The delamination factors were evaluated by the image processing technique. Finite element model (FEM) has been developed by using LS-Dyna to simulate the drilling processing and validate the thrust force and torque with those obtained by experimental technique. It is found that, the present finite element model has the capability to predict the force and torque efficiently at various drilling conditions. Numerical parametric analysis is presented to illustrate the influences of the speeding up, coefficient of friction, element type, and mass scaling effects on the calculated thrust force, torque and calculation's cost. It is found that, the cutting time can be adjusted by drilling parameters (feed, speed, and specimen thickness) to control the induced temperature and thus, the force, torque and delamination factor in drilling GFRP composites. The delamination of woven GFRP is accompanied with edge chipping, spalling, and uncut fibers.

Case Studies of Indirect Coupled Behavior of Rock for Deep Geological Disposal of Spent Nuclear Fuel (사용후핵연료 심층처분을 위한 암석의 간접복합거동 연구사례)

  • Hoyoung, Jeong;Juhyi, Yim;Ki-Bok, Min;Sangki, Kwon;Seungbeom, Choi;Young Jin, Shin
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.411-434
    • /
    • 2022
  • In deep geological disposal concept for spent nuclear fuel, it is well-known that rock mass at near-field experiences the thermal-hydraulic-mechanical (THM) coupled behavior. The mechanical properties of rock changes during the coupled process, and it is important to consider the changes into the analysis of numerical simulation and in-situ tests for long-term stability evaluation of nuclear waste disposal repository. This report collected the previous studies on indirect coupled behaviors of rock. The effects of water saturation and temperature on some mechanical properties of rock was considered, while the change in hydraulic conductivity of rock due to stress was included in the indirect coupled behavior.