• Title/Summary/Keyword: thermal diffusion

Search Result 938, Processing Time 0.03 seconds

The Effect of Residence Time on the Generation of Silica Nanoparticles in a Turbulent Diffusion Flame (난류 확산화염에서 체류시간이 실리카 나노입자의 생성에 미치는 영향)

  • Kwak, In-Jae;Bae, Soo-Ho;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.196-201
    • /
    • 2006
  • Silica(SiO2) nanoparticles are used as additives in plastics and rubbers to improve mechanical, electrical, magnetic properties and optical material. Silica nanoparticles were synthesized by the gas phase thermal oxidation of several kinds of precursors in many types of reactor. Diffusion flame reactor has some advantages compared with other types of reactors. In this study, we investigated the generation of silica nanoparticles on the effect of residence time by tetraethylothosilicate(TEOS) in a turbulent diffusion flame reactor controlled by providing reactant flowrate and reactor geometry affect particle morphology, particle size and particle size distribution. To determine the flame residence time, flame length should be determined which was examined by ICCD image. Particle size, distribution and morphology were performed with TEM.

  • PDF

Characterization of low-k dielectric SiOCH film deposited by PECVD for interlayer dielectric (PEDCVD로 증착된 ILD용 저유전 상수 SiOCH 필름의 특성)

  • Choi, Yong-Ho;Kim, Jee-Gyun;Lee, Heon-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.144-147
    • /
    • 2003
  • Cu+ ions drift diffusion in formal oxide film and SiOCH film for interlayer dielectric is evaluated. The diffusion is investigated by measuring shift in the flatband voltage of capacitance/voltage measurements on Cu gate capacitors after bias temperature stressing. At a field of 0.2MV/cm and temperature $200^{\circ}C,\;300^{\circ}C,\;400^{\circ}C,\;500^{\circ}C$ for 10min, 30min, 60min. The Cu+ ions drift rate of $SiOCH(k=2.85{\pm}0.03)$ film is considerable lower than termal oxide. As a result of the experiment, SiOCH film is higher than Thermal oxide film for Cu+ drift diffusion resistance. The important conclusion is that SiOCH film will solve a causing reliability problems aganist Cu+ drift diffuion in dielectric materials.

  • PDF

Thermomechanical interactions in a transversely isotropic thermoelastic media with diffusion due to inclined load

  • Parveen Lata;Heena
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.263-272
    • /
    • 2024
  • This research deals with the study of two-dimensional deformation in transversely isotropic thermoelastic diffusion medium. This investigation integrates the effect of diffusion and thermal effects in transversely isotropic thermoelastic solids under inclined load. Inclined load is taken as linear combination of normal load and tangential load. Laplace and Fourier transformation techniques are employed to transform the physical domain and then transformed solutions are inverted with the aid of numerical inversion techniques. Concentrated and distributed load are considered to exemplify its utility. Graphical representation of variation in displacement, stresses, temperature and concentration distribution with distance is depicted by taking inclination at different angles. Some particular cases are studied.

A Theoretical Study for the Thermal Diffusivity Measurement of Semi-Infinite Solid Using Photothermal Displacement Method (광열변위법을 이용한 반무한 고체의 열확산계수 결정에 대한 이론적 연구)

  • Jeon, Pil-Soo;Lee, Kwang-Jai;Yoo, Jai-Suk;Park, Young-Moo;Lee, Jong-Hwa
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1747-1755
    • /
    • 2002
  • A complete theoretical treatment of the photothermal displacement technique has been performed for thermal diffusivity measurement in semi-infinite solid materials. The influence of the parameters, such as radius and modulation frequency of the heating beam and the thermal diffusivity, was studied. Usually, thermal diffusivity was determined by the deformation angle and phase angle as the relative position between the heating and probe beams. In this study, we proposed the simple analysis method based on the real part of deformation gradient as the relative position between two beams. It is independent in the parameters such as power of heating beam, absorption coefficient, reflectivity, Poisson's ratio, and thermal expansion coefficient.

Thermal Debinding Behavior of PIM Components Produced with Different Powder Sizes and Shapes

  • Shu, Guo-Jiun;Hwang, Kuen-Shyang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.219-220
    • /
    • 2006
  • To understand the effect of powder characteristics on the thermal debinding behavior, PIM parts produced with powders with different particle sizes and particle shapes were examined to determine their weight losses during thermal debinding. The results show that the average diameter of the pore channel in the compact increased when the temperature increased and when coarse powders were used. However, the weight loss rates did not increase proportionally with the pore size. This suggests that the different powders that are frequently used in PIM parts do not affect the thermal debinding rate significantly. This is because the pore size is much larger than the mean free path of the decomposed gas molecules. Thus, the diffusion rates of the gases are not rate-controlling in thermal debinding. The controlling mechanism of the thermal debinding rate is the decomposition of the backbone binder in the PIM parts.

  • PDF

High-Temperature Tensile Strengths of Alloy 617 Diffusion Weldment (Alloy 617 확산용접재의 고온 인장강도)

  • Sah, Injin;Hwang, Jong-Bae;Kim, Eung-Seon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.1
    • /
    • pp.15-23
    • /
    • 2018
  • A compact heat exchanger is one of critical components in a very high temperature gas-cooled reactor (VHTR). Alloy 617 (Ni-Cr-Co-Mo) is considered as one of leading candidates for this application due to its excellent thermal stability and strengths in anticipated operating conditions. On the basis of current ASME code requirements, sixty sheets of this alloy are prepared for diffusion welding, which is the key technology to have a reliable compact heat exchanger. Optical microscopic analysis show that there are no cracks, incomplete bond, and porosity at/near the interface of diffusion weldment, but Cr-rich carbides and Al-rich oxides are identified through high resolution electron microscopic analysis. In high-temperature tensile testing, superior yield strengths of the diffusion weldment compared to the code requirement are obtained up to 1223 K ($950^{\circ}C$). However, both tensile strength and ductility drop rapidly at higher temperature due to the insufficient grain boundary migration across the interface of diffusion weldment. Best fit curves for minimum yield strength and average tensile strength are drawn from the experimental tensile results of this study.

Analysis of density diffusion analysis by Fick's laws in the human body (픽법에 의한 생체 내의 농도 확산 분석)

  • Che, Gyu-Shik
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.657-664
    • /
    • 2012
  • One of the methods to transmit solute through solvent is diffusion. Various particles or molecules including several charged ions in the body diffuse from high density region to low density due to density difference or external electric field. This kind of mechanism is due to thermal motion of each solute molecules. These situations can be deployed using Fick's first and second laws that govern diffusion phenomena in the body. I analysis these diffusion status of material in the body using above mentioned Fick's laws and then implement them through illustration.

Study on the Strategy of Numerical Modeling for Hybrid Combustion (하이브리드 연소의 수치 모델링 전략에 관한 연구)

  • Yoon, Changjin;Kim, Jinkon;Moon, Heejang
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.2
    • /
    • pp.37-42
    • /
    • 2007
  • This paper proposes a numerical modeling approach to simulate the hybrid combustion phenomena. From the physical understandings of hybrid combustion, the computational domain was separated into three regions: the solid fuel, gas phase reactive flow, and the interface between solid and fluid. Moreover, for the accurate calculation, computational grids for these regions was generated at every time step considering the instantaneous moving interface which are governed by the balance equations using thermal pyrolysis. In the domain of reactive flow, by virtue of diffusion flame structure, turbulent combustion modeling was introduced using either mixture fraction approach or mean reaction rate approach.

  • PDF

Characterization of vanadium carbide coating deposited by borax salt bath process

  • Aghaie-Khafri, M.;Daemi, N.
    • Advances in materials Research
    • /
    • v.1 no.3
    • /
    • pp.233-243
    • /
    • 2012
  • Thermal reactive diffusion coating of vanadium carbide on DIN 2714 steel substrate was performed in a molten borax bath at $950-1050^{\circ}C$. The coating formed on the surface of the substrate had uniform thickness ($1-12{\mu}m$) all over the surface and the coating layer was hard (2430-2700 HV), dense, smooth and compact. The influence of the kinetics parameters, temperature and time, has been investigated. Vanadium carbide coating was characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX) and X-ray diffraction analysis (XRD). The corrosion resistance of the coating was evaluated by potentiodynamic polarization in 3.5% NaCl solution. The results obtained showed that decrease of coating microhardness following increasing time and temperature is owing to the coarsening of carbides and coating grain size.

Rutherford Backscattering of Black Chrome Solar Selective Coatings (흑색크롬 태양광 선택흡수막의 Rutherford산란)

  • Lee, Kil-Dong;Chea, Young-Hi;Auh, Paul-Chung-Moo
    • Solar Energy
    • /
    • v.10 no.1
    • /
    • pp.57-62
    • /
    • 1990
  • The influence of substrate materials on the thermal stability of black chrome coating was investigated by Rutherford backscattering spectrometry(RBS). In order to study thermal degradation the sample were annealed in air for 24 hour at temperature of 450. Cu, Ni, and S.S(Stainless steel 304) were used as substrate for selective coating. The experimental results of substrate diffusion was discussed. It was found that little diffusion of substrate material occurred for the sample pre. pared on stainless steel.

  • PDF