• Title/Summary/Keyword: thermal degradation rate

Search Result 177, Processing Time 0.028 seconds

Non-isothermal TGA Study on Thermal Degradation Kinetics of ACM Rubber Composites (비등온 TGA를 이용한 ACM 고무복합재료의 열분해 거동 연구)

  • Ahn, WonSool;Lee, Hyung Seok
    • Elastomers and Composites
    • /
    • v.48 no.2
    • /
    • pp.161-166
    • /
    • 2013
  • Thermal degradation behavior of chlorine cure-site ACM and carboxylic cure-site ACM rubbers was studied by non-isothermal TGA thermal analysis. Carboxylic cure-site ACM rubber exhibited comparatively more thermally stable than chlorine cure-site ACM, showing higher peak temperature, at which maximum reaction rate occurred. Activation energies from Kissinger method were calculated as 118.6 kJ/mol for the chlorine cure-site ACM and 105.5 kJ/mol for the carboxylic cure-site ACM, showing similar values from Flynn-Wall-Ozawa analysis over the conversion range of 0.1~0.2. From the analysis of the reaction order change, both samples seemed thermally decomposed through the multiple reaction mechanism as is the common rubber materials.

Study on The Thermal Properties of Poly(methyl methacrylate) and Poly($\alpha$-methylstyrene-co-acrylonitrile) Mix tures (Poly(methyl methacrylate)와 Poly($\alpha$-methylstyrene-co-acrylonitrile) 혼합물의 열적특성에 관한 연구)

  • Moon, Deog-Ju;Kim, Byung-Chul;Kim, Dong-Keun;Seul, Soo-Duk;Sohn, Jin-Eon
    • Elastomers and Composites
    • /
    • v.23 no.4
    • /
    • pp.289-298
    • /
    • 1988
  • The thermal degradation of poly(methyl methacrylate)(PMMA) and poly($\alpha$-methylstyrene-co-acrylonitrile)(SAN) mixtures were carried out using the thermogravimetry(TG) and differential scanning calorimetry(DSC) in the stream of nitrogen and air with 50 ml/min at the various heating rate from 4 to $20^{\circ}C/min$ and temperature from 20 to $500^{\circ}C$. The value of activation energies of thermal degradation determined by TG and DSC in the various PMMA/SAN mixtures were 34-54 kcal/mol in the stream of nitrogen. The value of activation energy of SAN 60% mixture were appeared high in comparison with addition rule. PMMA/SAN mixtures by the analysis of infrared spectrophotometer were decomposed by main chain scission in the stream of nitrogen.

  • PDF

Degradation Mechanism of the ZnO-Varistor Fabricated with the content of a 3-Composition Seed grain (3-성분 종입자법으로 제조된 ZnO-Varistor의 열화기구)

  • 장경욱;박춘배;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.97-100
    • /
    • 1992
  • The Degradation mechanism of the ZnO-varistor fabricated with the content of a 3-Composition seed grain is discussed using the method of Thermally Stimulated Current (TSC). The spectra of TSC is measured in the temperature range of -130~270$^{\circ}C$ with a various forming electric fields E$\sub$f/, temperature T$\sub$f/ time tf, and a various rising rate of temperature. It is observed that there are appeared the peaks of ${\alpha}$, ${\alpha}$$_2$, ${\beta}$ and ${\gamma}$from high temperature in a TSC spectrum. It seems that ${\alpha}$$_1$ peak is due to thermal depolarization of donor ions forming the space charge in the depletion layer, and ${\alpha}$$_2$peak is due to the detrapping of trapped electrons in deep trap level of intergranular layer, and ${\beta}$ peak is due to the thermal exciting of carrier existing in the donor level of grain itself, and ${\gamma}$ peak is due to the thermal exciting of trapped carrier in all shallow trap site randomly distributed in the inner of sample and/or a intrinsic impurity existing in it.

  • PDF

The Potential Energy Recovery and Thermal Degradation of Used Tire Using TGA (열분석법을 이용한 사용후 타이어의 열적 특성과 포텐셜 에너지의 회수)

  • Kim, Won-Il;Kim, Hyung-Jin;Hong, In-Kwon
    • Elastomers and Composites
    • /
    • v.34 no.2
    • /
    • pp.135-146
    • /
    • 1999
  • The thermal degradation kinetics of SBR and tire were studied using a conventional thermogravimetric analysis in the stream nitrogen at a heating rate of 5, 10, 15, $20^{\circ}C/min$, respectively. Thermogravimetric curves and their derivatives were analyzed using various analytical methods to determine the kinetic parameters. The degradation of the SBR and tire was found to be a complex process which has multi-stages. The Friedman method gave average activation energies for the SBR and tire of 247.53kJ/mol and 230.00kJ/mol, respectively. Mean-while, the Ozawa method Eave 254.80kJ/mol and 215.76kJ/mol. It would appear that either. Friedman's differential method or Ozawa's integral method provided satisfactory mathematical approaches to determine the kinetic parameters for the degradation of the SBR and tire. Approximately 86% and 55% of oil products were obtained at a final temperature of $700^{\circ}C$ and a heating rate of $20^{\circ}C/min$ for the SBR and tire respectively.

  • PDF

Thermal Properties of Copolyetherester/silica Nanocomposites

  • Baik, Doo-Hyun;Kim, Hae-Young;Kwon, Sun-Jin;Kwon, Myung-Hyun;Lee, Han-Sup;Youk, Ji-Ho;Seo, Seung-Won
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.367-371
    • /
    • 2006
  • Thermal properties of copolyetherester/silica nanocomposites were examined by using DSC and TGA. The segmented block copolyetheresters with various hard segment structures and hard segment contents (HSC) were synthesized and their silica nanocomposite films were prepared by solution casting method. The nano-sized fumed silica particles were found to act as a nucleating agent of the copolyetheresters. The nanocomposites always showed reduced degree of supercooling or faster crystallization than the corresponding copolyetheresters. The nanocomposites also showed increased hard segment crystallinity except HSC 35 sample which had short hard segment length. In case of 2GT [poly(ethylene terephthalate)] copolyetheresters, which were not developed commercially because of their low crystallization rate, the hard segment crystallinity increased considerably. The copolyetherester/silica nanocomposites showed better thermal stability than copolyetheresters.

Characterization and processing of Biodegradable polymer blends of poly(lactic acid) with poly(butylene succinate adipate)

  • Lee, Sang-Mook;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 2005
  • We investigated thermal, rheological, morphological and mechanical properties of a binary blend of poly(lactic acid) (PLA) and poly(butylene succinate adipate) (PBSA). The blends were extruded and their molded properties were examined. DSC thermograms of blends indicated that the thermal properties of PLA did not change noticeably with the amount of PBSA, but thermogravimetric analysis showed that thermal stability of the blends was lower than that of pure PLA and PBSA. Immiscibility was checked with thermal data. The rheological properties of the blends changed remarkably with composition. The tensile strength and modulus of blends decreased with PBSA content. Interestingly, however, the impact strength of PLA/PBSA (80/20) blend was seriously increased higher than the rule of mixture. Morphology of the blends showed a typical sea and island structure of immiscible blend. The effect of the blend composition on the biodegradation was also investigated. In the early stage of the degradation test, the highest rate was observed for the blend containing $80wt\%$ PBSA.

Photodegradation of Phenol over TiO2-SiO2 Catalysts Prepared by Sol-gel Method (졸-겔법으로 제조한 TiO2-SiO2촉매에서 페놀의 광분해 반응)

  • 홍성수;이만식;이근대;주창식
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.597-603
    • /
    • 2002
  • Photocatalytic degradation of phenol was carried out with UV-illuminated TiO$_2$-SiO$_2$ in aqueous suspension. TiO$_2$-SiO$_2$ catalysts were prepared by sol-gel method from the titanium isopropoxide and tetraethylorthosilicate at different Ti/Si ratio and some commercial TiO$_2$ catalysts were used as purchased. All catalysts were characterized by X-ray Diffraction(XRD) and BET surface area analyzer. The effect of reaction conditions, such as initial concentration of phenol, reaction temperature and catalyst weight on the photocatalytic activity was studied. In addition, TiO$_2$-SiO$_2$(49: 1) prepared by sol-gel method showed higher activity than commercial TiO$_2$catalysts on the photocatalytic degradation of phenol. The addition of SiO$_2$ into TiO$_2$hepled to increase the thermal stability of titania which suppressed the formation of anatase into rutile. The photocatalytic degradation of phenol showed pseudo-1st order reaction and the degradation rate increases with decreasing initial phenol concentration.

Degradation of PDP Phosphors Under VUV Excitation (PDP 형광체의 진공 자외선 조사에 따른 열화 특성)

  • Lee, R.Y.;Lee, S.H.;KIm, Y.H.
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.735-739
    • /
    • 2002
  • $(Y,Gd)BO_3$: Eu, $Zn_2$$SiO_4$ : Mn and $BaMgAl_{10}$ $O_{17}$ : Eu phosphors used in PDP were continuously irradiated by vacuum ultra violet generated from the penning gas (96%Ar+4%Xe) discharge and then the change of emitting intensity with time was investigated. The brightness of these phosphors decreased exponentially with VUV excitation time. The experimental data showed that the degradation rate increased in the order of $Zn_2$$SiO_4$ : Mn>(Y,Gd)$BO_3$: Eu>$BaMgAl_{10}$ $O_{17}$ : Eu phosphor. This different degradation property of phosphors was interpreted in terms of brightness saturation and stability against VUV irradiation. It was found that the degradation property of $(Y,Gd)BO_3$ : Eu red phosphor synthesized by ultrasonic thermal spray was superior to commercial phosphor.

Analysis on Thermal Degradation of Poly($\gamma$-glutamic acid) Sodium Salt by means of Light Scattering and Viscometry (광산란과 점성도법에 의한 폴리감마글루탐산 나트륨 염의 열분해 분석)

  • Park, Il-Hyun;Eom, Hyo-Sang;Kwon, Hyo-Lee
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.501-508
    • /
    • 2009
  • The thermal degradation experiment of sodium salt of poly (${\gamma}$-glutamic acid) (PGGNa) has been carried out in both its solid phase and solution phase at the range of $57{\sim}120^{\circ}C$ and their molecular weight decreasing effect was analyzed as a function of time by means of viscometry and light scattering. Based on the solid phase degradation results, it was supposed that the bond scission rate in a polymer chain kept constant and that the bond scission was occurred on a randomly located position in a polymer chain. For the degradation in solution phase, it was also found that all data at various temperatures were dropped on a single master curve when the reduced time $t/t^*$ was used in the plot of the reciprocal intrinsic viscosity (or molecular weight). This degradation curve in solution phase could be expressed as the sum of a single exponential and a linear equation and especially, the single exponential character appeared only at the beginning stage. The activation energy was measured as $107{\sim}115$ kJ/mol in this study and agreed with the literature values.

Thermal Behavior of Hwangto and Wood Flour Reinforced High Density Polyethylene (HDPE) Composites

  • Lee, Sun-Young;Doh, Geum-Hyun;Kang, In-Aeh
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.59-66
    • /
    • 2006
  • The thermal properties of wood flour, Hwangto, and maleated polyethylene (MAPE) reinforced HDPE composites were investigated in this study. The thermal behavior of reinforced wood polymer composites was characterized by means of thermogravimetric (TGA) and differential scanning calorimetric (DSC) analyses. Hwangto and MAPE were used as an inorganic filler and a coupling agent, respectively. According to TGA analysis, the increase of wood flour level increased the thermal degradation of composites in the early stage, but decreased in the late stage. On the other hand, Hwangto reinforced composites showed the higher thermal stability than virgin HDPE, from the determination of differential peak temperature ($DT_p$). Decomposition temperature of wood flour and/or Hwangto reinforced composites increased with increase of heating rate. From DSC analysis, melting temperature of reinforced composites little bit increased with the addition of wood flour or Hwangto. As the loading of wood flour or Hwangto to HDPE increased, overall enthalpy decreased. It showed that wood flour and Hwangto absorbed more heat energy for melting the reinforced composites. Hwangto reinforced composites required more heat energy than wood flour reinforced composites and virgin HDPE. Coupling agent gave no significant effect on the thermal properties of composites. Thermal analyses indicate that composites with Hwangto are more thermally stable than those without Hwangto.