Browse > Article
http://dx.doi.org/10.7473/EC.2013.48.2.161

Non-isothermal TGA Study on Thermal Degradation Kinetics of ACM Rubber Composites  

Ahn, WonSool (Department of Chemical Engineering, Keimyung University)
Lee, Hyung Seok (R&D Center, HanKook Sealtech, Inc.)
Publication Information
Elastomers and Composites / v.48, no.2, 2013 , pp. 161-166 More about this Journal
Abstract
Thermal degradation behavior of chlorine cure-site ACM and carboxylic cure-site ACM rubbers was studied by non-isothermal TGA thermal analysis. Carboxylic cure-site ACM rubber exhibited comparatively more thermally stable than chlorine cure-site ACM, showing higher peak temperature, at which maximum reaction rate occurred. Activation energies from Kissinger method were calculated as 118.6 kJ/mol for the chlorine cure-site ACM and 105.5 kJ/mol for the carboxylic cure-site ACM, showing similar values from Flynn-Wall-Ozawa analysis over the conversion range of 0.1~0.2. From the analysis of the reaction order change, both samples seemed thermally decomposed through the multiple reaction mechanism as is the common rubber materials.
Keywords
ACM Rubber; TGA; Kissinger; Flynn-Wall-Ozawa;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. E. Kissinger, "Reaction Kinetics in Differential Thermal Analysis", Anal. Chem. 29, 1702 (1957).   DOI
2 J. H. Flynn and L. A. Wall, "A Quick, Direct Method for the Determination of Activation Energy from Thermogravimetric Data", J. Polym. Sci., Part B: Polym. Lett., 4, 323 (1966).   DOI
3 R. M. B. Moreno, E. S. de Medeiros, F. C. Ferreira, N. Alves, P. S. Goncalves, and L. H. C. Mattoso1, "Thermogravimetric studies of decomposition kinetics of six different IAC Hevea rubber clones using Flynn-Wall-Ozawa approach", Plastics, Rubber and Composites, 35(1), 15 (2006).   DOI   ScienceOn
4 J. I. Cunneen "Degradation of natural rubber during manufacture, storage and service", Proc. NR technology seminar, 4-5 December, 199 (1978).
5 R. L. Feller, "Accelerated Aging: Photochemical and Thermal Aspects", Marina del Rey, CA, Getty Conservation Institute, (1994).
6 R. C. Klingender, ed. "Handbook of Specialty Polymers", Ch. 5., CRC Press, N.Y., 2008.
7 I. S. Huh, "Engine Gasket Materials and Property Evaluation" , Rubber Technol., 1, 78 (2000).
8 H. S. Lee, J. H. Do, W. Ahn, and C. Kim, "A Study on Physical Properties and Life Time Prediction on ACM Rubber for Automotive Engine Gasket", Elast. Compos. 47(3), 254 (2012).   과학기술학회마을   DOI   ScienceOn
9 J. S. Dick, ed. "Rubber Technology, Compounding and Testing for Performance", Ch. 8, Carl Hanser Verlag, Munich, 2010.
10 W. D. Kim, W. S. Kim, C. S. Woo, and S. J. Cho, "Prediction of Useful Life by Heat Ageing of Motor Fan Isolating Rubber", Elastomer, 37, 107 (2002).
11 TOA Acron, AR-501, 501L, AR540, AR540L Heat and Oil Resistance Polyacrylate Elastomer Bulletin.
12 D. J. Toop, "Theory of Life Testing and Use of Thermogravimetric Analysis to Predict the Thermal Life of Wire Enamels", IEEE Trans. Elec. Insul., E1-6, 2 (1971).
13 J. Wise, K. T. Gillen and R. L. Clough, "An ultra sensitive technique for testing the Arrhenius extrapolation assumption for thermally aged elastomers", Polym. Degard. Stab., 49, 403 (1995).   DOI   ScienceOn
14 L. W. McKeen. "The Effect of Temperature and Other Factors on Plastics and Elastomers", 2nd ed., Ch. 7, William Andrew Inc., N.Y., 2008.
15 W. S. Ahn and K. H. Park. "A Study on Thermal Life-Time Expectation of NR Rubber Material using Isothermal TGA and TMA", Elast. Compos. 44(3), 269 (2009).   과학기술학회마을