• Title/Summary/Keyword: thermal degradation products

Search Result 67, Processing Time 0.037 seconds

Formation of Pyro-products by the Pyrolysis of Monobromophenols

  • Na, Yun-Cheol;Seo, Jung-Ju;Hong, Jong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1276-1280
    • /
    • 2003
  • Thermal behavior of bromphenols was investigated by direct pyrolysis at high temperature. The thermal degradation products formed by the pyrolysis of mono-bromophenols (o-, m-, and p-) were identified by gas chromatography-mass spectrometry. During the pyrolysis reactions, several kinds of dioxins and furans were produced, and the relative ratio of pyro-products was dependent on the substituted position of bromine in phenolic structure due to the effect of symmetry and steric hindrance. The formation of dioxins can be explained by the phenoxy radical addition and Br atom elimination at an ortho-carbon site on phenolic structure. On the other hand, the formation of furans can be explained by the ortho-ortho carbon coupling of phenoxy radicals at unsubstituted sites to form o, o'-dihydroxydiphenyl intermediate via its keto-tautomer, followed by $H_2O$ elimination. The pyrolysis temperature has also a substantial effect on the dimerized products quantities but little effect on the type of pyro-products. Moreover, the formation mechanism of pyro-products was suggested on the basis of products identified.

Analysis of Degradation Products in Madder Dyed Fabrics in Selective Degradation Conditions (퇴화조건에 따른 꼭두서니 염색물의 퇴화물 연구)

  • Ahn, Cheun-Soon;Obendorf, S.-Kay
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.12 s.148
    • /
    • pp.1608-1618
    • /
    • 2005
  • The purpose of this investigation was to investigate the degradation products of the dye component extracted from madder dyed fabrics using the GC-MS analysis and to evaluate the change of color due to degradation treatment. Four different degradation protocols were used in this study,; refrigeration at $7^{\circ}C$ (LT), room temperature (RT), oven treatment at $100^{\circ}C$ (OV), and $H_2O_2/UV(PER)$ method. Degradation times for each thermal system were 6 hour, 24 hour, 48 hour, 1 week, 2 week, 4 week. Alizarin was detected from the control and degraded samples of both alizarin dyed and madder dyed fabrics. Benzoic acid, 2, 4-di-tert-butylphenol, phthalic anhydride were detected as the degradation products for both alizarin dyed and madder dyed fabrics. The result suggest that these products can be used as the fingerprints of GC-MS analysis for the identification of madder dye in archaeological textiles. Both alizarin dyed and madder dyed samples became less red and less yellow after degradation. In the PER degradation system madder dyed sample showed the greatest color difference even after 1 week of degradation treatment. Further research is necessary for investigating the color change in the exhumed textiles, which is caused by the dual action of dye fading and the staining of organic matters in the soil.

Use of Red Algae Fiber as Reinforcement of Biocomposite (홍조류 섬유를 보강재로 사용한 바이오복합재료의 특성)

  • Lee, Min-Woo;Seo, Yung-Bum;Han, Seong-Ok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.1
    • /
    • pp.62-67
    • /
    • 2008
  • Biocomposite was fabricated with biodegradable polymer and natural fiber that has potential to be used as replacement for glass fiber reinforced polymer composite with the benefits of low cost, low density, acceptable specific strength, biodegradability, etc. Until now, mostly natural cellulosic fibers on land have been used as reinforcement for biocomposite. The present study focused on investigating the fabrication and the characterization of biocomposite reinforced with red algae fibers from the sea. The bleached red algae fiber (BRAF) showed very similar crystallinity to the wood cellulose. It has high stability against thermal degradation (maximum thermal decomposition temperature of 359.3$^{\circ}C$) and thermal expansion. Biocomposites reinforced with BRAF have been fabricated by a compression molding method and their mechanical and thermal properties have been studied. The storage modulus and the thermomechanical stability of PBS (polybuthylenesuccinate) matrix are markedly improved by reinforcing with the BRAF. These results indicate that red algae fiber can be used as an excellent reinforcement of biocomposites, which are sometimes called as "green-composites" or "eco-composites".

The Coating Performance of UV Curable Urethane Acrylate Coatings for Fancy Veneer Overlayed Plywood Flooring

  • Lee, Byoung-Hoo;Kim, Hyun-Joong;Lee, Young-Kyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.23-35
    • /
    • 2004
  • The goal of study was to investigate the influence of the acrylated urethane oligomer on mechanical properties, the chemical resistance and thermal resistance of the UV curable urethane acrylate coatings for fancy veneer overlayed plywood flooring. The pencil hardness and abrasion resistance of the coated fancy veneer overlayed plywood floorings increased with increasing the acrylate functionality of the acrylated urethane oligomer. In the case of the UV cured film containing hexa-functional acrylated aliphatic urethane oligomer, high discoloration of the coated fancy veneer overlayed plywood flooring was observed near the cracks at the beginning of the chemical treatment. In this study, it was found that the degradation of the UV cured film caused by an alkaline reagent was higher than that of the UV cured film caused by an acidic treatment.

Thermal Shock Behavior of Barium Titanate Ceramics

  • Jae Yeon Kim;Young Wook Kim;Kyeong Sik Cho;June Gunn Lee
    • The Korean Journal of Ceramics
    • /
    • v.3 no.3
    • /
    • pp.195-198
    • /
    • 1997
  • Post-firing process of electronic ceramic, such as electroding and encapsultion with resin, often causes damage by thermal shock. The thermal shock behavior of $BaTiO_3$ ceramics was investigated by the down-quench test, where the relative strength retained is determined after the sample is quenched from an elevated temperature into a fixed temperature bath. The critical temperature drop, $\DeltaTc$, was evaluated for three kinds of sintered $BaTiO_3$ ceramics, which were formed by extrustioin, uniaxial pressing using granules, and uniaxial pressing using powders. A drastic loss in strength caused by microcracking was observed for the specimens quenched with $\DeltaT\geq150^{\circ}C$. This concentp can be adopted as a method of the quality control by monitoring the sudden drop of the strength of capacitor products after each exposure to heat.

  • PDF

Electrical and thermal properties of polyamideimide-colloid silica nanohybrid for magnetic enameled wire

  • Han, S.W.;Kang, D.P.
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.428-432
    • /
    • 2012
  • Polyamidimide (PAI)-colloidal silica (CS) nanohybrid films were synthesized by an advanced sol-gel process. The synthesized PAI-CS hybrid films have a uniform and stable chemical bonding and there is no interfacial defects observed by TEM. The thermal degradation ratio of PAI-CS (10 wt%) hybrid films is delayed by 100 ℃ compared with pure PAI sample determined by on set temperature range in TGA. The dielectric constant of PAI-CS (10 wt%) hybrid films decreases with increasing CS content up to about 5 wt% but increases at higher CS content, which is not explained simply by effective medium therories (EMT). The duration time of PAI-CS (10 wt%) hybrid coil is 38 sec, which is very longer than that of pure PAI coil sample. The PAI-CS (10 wt%) hybrid film has a higher breakdown voltage resistance than the pure PAI film at surge environment and exhibits superior heat resistance. The PAI-CS (10 wt%) sample shows the advanced and stable thermal emission properties in transformer module compared with the pure PAI sample. This result illustrates that the advanced thermal conductivity and expansion properties of PAI-CS sample in the case of appropriate sol-gel processes brings the stable thermal emission in transformer system. Therefore, new PAI-CS hybrid samples with such stable thermal emission properties are expected to be used as a high functional coating application in ET, IT and electric power products.

Effect of Temperature and pH on Thermal Stability of Aspartame (아스파탐의 열안정성에 미치는 온도와 pH의 영향)

  • Kim, Woo-Jung;Chung, Nam-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.311-315
    • /
    • 1996
  • Thermal stability of aspartame was investigated as affected by the temperature and pH during heating. The thermal stability study of aspartame heated at $60-100^{\circ}C$ showed that aspartame was degraded more rapidly as the heating temperature increased. Activation energy for thermal degradation was 20.77 kcal/mol. The thermal degradation products, a diketopiperazine (DKP) and ${\alpha}$-aspartylphenylalanine (${\alpha}$-AP), were rapidly increased while the aspartame concentration decreased. The pH change of aspartame solution was rapidly decreased during initial three hours of heating and more significant at high temperature. In the pH range ()』 3-7, aspartame was the most unstable at pH 7 and stable at pH 4. The thermal degradation rate contants were 0.827 at pH 7, 0.286 at pH 6, 0.072 at pH 5 and 0.045 at pH 4 during initial heating at $100^{\circ}C$.

  • PDF

Use and advantage of Red algae fiber as reinforcement of Biocomposite (홍조류 섬유를 보강재로 사용한 바이오복합재료의 특성)

  • Lee, Min-Woo;Seo, Yung-Bum;Han, Seong-Ok
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.11a
    • /
    • pp.93-102
    • /
    • 2007
  • Biocomposite was organized with biodegradable polymer and natural fiber that has potential to be used as replacement for glass fiber reinforced polymer composite with the benefits of low cost, low density, acceptable specific strength, biodegradability, etc. Until now, non-wood fibers have been used as reinforcements of biocomposite which are all plant-based fibers. The present study focused on investigating the fabrication and characterization of biocomposite reinforced with red algae fiber. The bleached red algae fiber(BRAF) showed very similar crystallinity to the cellulose. It has high stability against thermal degradation (maximum thermal decomposition temperature of 359.3$^{\circ}C$) and thermal expansion. Biocomposites reinforced with BRAF have been fabricated by a compression molding method and their mechanical and thermal properties have been studied. The storage modulus and the thermomechanical stability of PBS matrix are markedly improved with reinforcing the BRAF. These results support that the red algae fiber can be used as an excellent reinforcement of biocomposites as "green-composite" or "eco-composite".

  • PDF

Furan in Thermally Processed Foods - A Review

  • Seok, Yun-Jeong;Her, Jae-Young;Kim, Yong-Gun;Kim, Min Yeop;Jeong, Soo Young;Kim, Mina K.;Lee, Jee-yeon;Kim, Cho-il;Yoon, Hae-Jung;Lee, Kwang-Geun
    • Toxicological Research
    • /
    • v.31 no.3
    • /
    • pp.241-253
    • /
    • 2015
  • Furan ($C_4H_4O$) is a volatile compound formed mostly during the thermal processing of foods. The toxicity of furan has been well documented previously, and it was classified as "possible human carcinogen (Group 2B)" by the International Agency for Research on Cancer. Various pathways have been reported for the formation of furan, that is, thermal degradation and/or thermal rearrangement of carbohydrates in the presence of amino acids, thermal degradation of certain amino acids, including aspartic acid, threonine, ${\alpha}$-alanine, serine, and cysteine, oxidation of ascorbic acid at higher temperatures, and oxidation of polyunsaturated fatty acids and carotenoids. Owing to the complexity of the formation mechanism, a vast number of studies have been published on monitoring furan in commercial food products and on the potential strategies for reducing furan. Thus, we present a comprehensive review on the current status of commercial food monitoring databases and the possible furan reduction methods. Additionally, we review analytical methods for furan detection and the toxicity of furan.

Thermal Properties of Corn-Starch Filled Biodegradable Polymer Bio-Composites (옥수수 전분을 충전제로 첨가한 생분해성 고분자 복합재료의 열적성질)

  • Kim, Hee-Soo;Yang, Han-Seung;Kim, Hyun-Joong;Lee, Young-Kyu;Park, Hee-Jun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.29-38
    • /
    • 2004
  • In this study, we investigated the thermal properties of corn-starch filled polybutylene succinate-adipate (PBS-AD) bio-composites. Thermal analysis (TA) is used to describe the analytical method for measuring the chemical property and weight loss of composite materials as a function of temperature. The thermal stability of corn-starch was lower than that of pure PBS-AD. As corn-starch loading increased, the thermal stability and degradation temperature of the bio-composites decreased and the ash content increased. It can be seen that the degree of compatibility and interfacial adhesion of the bio-composites decreased because of the increasing mixing ratio of the corn-starch. As the content of corn-starch increased, there was no significant change in the glass transition temperature (Tg) and the melting temperature (Tm) for the bio-composites. The storage modulus (E') and loss modulus (E") of the corn-starch flour filled PBS-AD bio-composites were higher than those of PBS-AD, because of the incorporation of corn-starch increased the stiffness of the bio-composites. At higher temperatures, the decreased storage modulus (E') of bio-composites was due to the increased polymer chain mobility of the matrix polymer. From these results, we can expect that corn-starch has potential as a reinforcing filler for bio-composites. Furthermore, we recommend using a coupling agent to improve the interfacial adhesion between corn-starch and biodegradable polymer.