• Title/Summary/Keyword: thermal control design

Search Result 639, Processing Time 0.031 seconds

THE ORBITAL THERMAL ANALYSIS OF HAUSAT-2 AND ITS THERMAL CONTROL SUBSYSTEM PRELIMINARY DESIGN (HAUSAT-2의 궤도 열해석과 열제어계의 예비설계)

  • Lee Mi-Hyeon;Kim Dong-Woon;Chang Young-Keun
    • Bulletin of the Korean Space Science Society
    • /
    • 2005.04a
    • /
    • pp.129-132
    • /
    • 2005
  • This paper describes BAUSAT-2 orbital thermal analysis and preliminary design of thermal control subsystem. To design thermal control subsystem of HAUSAT-2, we have considered active & passive thermal control method based on basic theory and themal equilibrium equation. Using this result, suitable thermal control method and material have been selected. We have designed thermal control subsystem based on analysis of HAUSAT-2's thermal environments on sun synchronous orbit with altitude 650km, inclination $98^{\circ}$ and thermal distribution and range expectation of each HAUSAT-2's surface. Thermal analysis consists of system level, box level and board level analysis. We have completed system level and box level analysis. Till now, board level analysis of main heat dissipation board in progress. Thermal control subsystem has designed according to thermal analysis result. This design is to maintain all of the HAUSAT-2 components within the allowable temperature limits. In future, STM

  • PDF

The Optimum Design of Casting Process through Prediction and control of Thermal Deformation (주조 공정 시 열변형 예측과 제어를 통한 금형의 최적 설계에 관한 연구)

  • Choi, Bong-Hak;Kwahk, Si-Young;Kim, Jeong-Tae;Choi, Jeong-Kil;Lee, Dong-Il
    • Journal of Korea Foundry Society
    • /
    • v.25 no.5
    • /
    • pp.209-215
    • /
    • 2005
  • The design of the Metal mold casting should consider several variables such as the material properties and shape of the mold. In particular, the thermal stress generated by the thermal expansion and contraction depending on the thermal gradient of the mold causes partial plastic deformation on the mold, which causes damage or fracture of the cast. Consequently, the thermal deformation along with thermal stress leads to thermal deformation of the cast itself. In this study, the temperature analysis of the cast and mold is simulated by FDM to control the thermal deformation and stress as a result of the thermal gradient of mold. Using the results from FDM simulation, the thermal deformation and stress are analyzed by FEM and, the optimal mold design with minimum thermal deformation of the cast is suggested.

A CONCEPTUAL DESIGN OF RADIATIVE THERMAL CONTROL SYSTEM IN A GEOSTATIONARY SATELLITE OPTICAL PAYLOAD (정지궤도위성 광학탑재체 복사 열제어 시스템 개념 설계)

  • Kim, Jung-Hoon;Jun, Hyoung-Yoll
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.62-68
    • /
    • 2007
  • A conceptual thermal design is performed for the optical payload system of a geostationary satellite. The optical payload considered in this paper is GOCI(Geostationary Ocean Color Imager) of COMS of Korea. The radiative thermal control system is employed in order to expect a small thermal gradient in the telescope structure of GOCl. Two design margins are applied to the dedicated radiator dimensioning, and three kinds of configuration to the heater power sizing. A Monte-Carlo ray tracing method and a network analysis method are utilized to calculate radiative couplings and thermal responses respectively. At the level of conceptual design, sizing thresholds are presented for the radiator and heater on the purpose of determining the mass and power budget of the spacecraft.

Nonlinear Optimal Control of an Input-Constrained and Enclosed Thermal Processing System

  • Gwak, Kwan-Woong;Masada, Glenn Y.
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.160-170
    • /
    • 2008
  • Temperature control of an enclosed thermal system which has many applications including Rapid Thermal Processing (RTP) of semiconductor wafers showed an input-constraint violation for nonlinear controllers due to inherent strong coupling between the elements [1]. In this paper, a constrained nonlinear optimal control design is developed, which accommodates input constraints using the linear algebraic equivalence of the nonlinear controllers, for the temperature control of an enclosed thermal process. First, it will be shown that design of nonlinear controllers is equivalent to solving a set of linear algebraic equations-the linear algebraic equivalence of nonlinear controllers (LAENC). Then an input-constrained nonlinear optimal controller is designed based on that LAENC using the constrained linear least squares method. Through numerical simulations, it is demonstrated that the proposed controller achieves the equivalent performances to the classical nonlinear controllers with less total energy consumption. Moreover, it generates the practical control solution, in other words, control solutions do not violate the input-constraints.

Thermal Analysis of TRIO-CINEMA Mission

  • Yoo, Jae-Gun;Jin, Ho;Seon, Jong-Ho;Jeong, Yun-Hwang;Glaser, David;Lee, Dong-Hun;Lin, Robert P.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.1
    • /
    • pp.23-31
    • /
    • 2012
  • Thermal analysis and control design are prerequisite essential to design the satellite. In the space environment, it makes satellite survive from extreme hot and cold conditions. In recent years CubeSat mission is developed for many kinds of purpose. Triplet Ionospheric Observatory (TRIO)-CubeSat for Ion, Neutral, Electron, MAgnetic fields (CINEMA) is required to weigh less than 3 kg and operate on minimal 3 W power. In this paper we describe the thermal analysis and control design for TRIO-CINEMA mission. For this thermal analysis, we made a thermal model of the CubeSat with finite element method and NX6.0 TMG software is used to simulate this analysis model. Based on this result, passive thermal control method has been applied to thermal design of CINEMA. In order to get the better conduction between solar panel and chassis, we choose aluminum 6061-T6 for the material property of standoff. We can increase the average temperature of top and bottom solar panels from $-70^{\circ}C$ to $-40^{\circ}C $ and decrease the average temperature of the magnetometer from $+93^{\circ}C$ to $-4^{\circ}C$ using black paint on the surface of the chassis, inside of top & bottom solar panels, and magnetometer.

Comparisons of Thermal Insulations between on Air-Cell Pack Embedded Jacket and Down Jackets (공기주입형 의복의 보온력 측정 및 다운재킷의 보온력과의 비교)

  • Kim, Yung-Bin;Jang, Won;Kim, Kirim;Kim, Siyeon;Baek, Yoon Jeong;Lee, Joo-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.1
    • /
    • pp.55-62
    • /
    • 2015
  • This study investigated the thermal insulation of an air-cell pack embedded jacket and down jackets to understand the potential of air-cell pack as a filler for winter outdoor wear. A thermal manikin measured the thermal insulation of the following jackets: HD (heavy down jacket, total weight (Tw) 750g, goose down weight (Dw) 350g), LD (light down jacket, Tw 560g, Dw 140g), AF (air-cell pack embedded jacket, Tw 490g, trunk goose down in LD was replaced to air cell), F (film jacket, Tw 469g, but removed the air in the air-cell pack from the AF), and Control (control jacket, Tw 438g, removed the air-cell pack film from the F). Thermal insulations of each experimental condition were measured in a static standing posture. Total thermal insulations (IT) were 1.29clo (HD), 1.23clo (LD), 1.16clo (AF), 1.20clo (F), and 1.08clo (Control). Body regional thermal insulation was higher in the chest and back than in the abdomen and hip in all conditions. The results suggest that an economical and versatile outdoor jacket with superior thermal insulation will be feasible if the air volume is properly controlled in air-cell pack embedded jackets in consideration of regional different distribution and used in combination with film and down.

THERMAL CONTROL DESIGN FOR COMS (COMS 특별세션)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Kim, Sung-Hoon;Yang, Koon-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.199-202
    • /
    • 2007
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication, ocean observation and meteorological observation. Conventional thermal control design, using MLI (Multi Layer Insulation), OSR (Optical Solar Reflector), heater and heat pipe, is utilized. Ka-band components are installed on South wall, while other equipment for sensors are installed on the opposite side, North wall. High dissipating communication units are located on external (surface) heat pipe and are covered by internal insulation blankets to decouple them from the rest of the satellite. External satellite walls are covered by MLI or OSR for insulation from space and for rejection internal heat to space. The ocean and meteorological sensors are installed on optical benches on the top floor to decouple thermally from the satellite. Single solar array wing is adopted in order to secure clear field of view of radiant cooler of IR meteorological sensor. This paper presents principles of thermal control design for the COMS.

  • PDF

The development of RF Control System For the High-Speed Thermal Printer (고속 Thermal Printer의 무선원격제어장치 개발)

  • Woo, Chun-Hee;Han, Tae-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • In this paper, We design a RF control system capable of handling multiple POS thermal printers. The system has three parts including embedded master controller, RF controller and high-speed thermal printer. Specially the designed linux embedded controller has simple structure and high performance to connect the TCP/IP network. The effectiveness of the developed RF control system is shown by proposed food ordering system.

Design Verification of Thermal Control Subsystem for EOS-C Ver.3.0 using STM Thermal Vacuum Test Result (STM 열진공 시험 결과를 이용한 EOS-C Ver.3.0 열제어계 설계 검증)

  • Chang, Jin-Soo;Yang, Seung-Uk;Jeong, Yun-Hwang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1232-1239
    • /
    • 2010
  • A high-resolution electro-optical camera (EOS-C Ver.3.0), the mission payload of an Earth observation satellite, is under development in Satrec Initiative. We designed this system to give improved thermal performance compared with the EOS-C Ver.2.0 which is the main payload of DubaiSat-1 by optimizing the active and passive thermal control design. We developed the Structural-Thermal Model (STM) and verified the design margin by performing the qualification level thermal vacuum test. We also conducted the verification of its Thermal Mathematical Model (TMM) through the thermal balance test. As a result, it was confirmed that TMM faithfully represents the thermal characteristics of the EOS-C Ver.3.0.

Optimal Design of Graphite Sheet based Cryogenic Cooler Thermal Control System using Veritrek Software (Veritrek 소프트웨어를 활용한 그라파이트시트 기반 극저온 냉각기 열 제어 시스템 최적설계)

  • Bong-Geon Chae;Hye-In Kim;Hyun-Ung Oh
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.71-78
    • /
    • 2024
  • During the initial thermal design process, determining the thermal effect of various design variables in a complex orbital thermal environment is time-consuming. To save time in the initial design phase, it is necessary to quickly derive optimal design parameters and predict the temperature. To address these challenges, Veritrek, a software specialized in optimal design using a reduced-order model (ROM), was released in 2018. In this paper, we utilized the Veritrek software to build a reduced-order model, conduct sensitivity analysis, and perform optimal design analysis for a graphite sheet-based cryogenic cooler thermal control system. The goal was to determine the optimal design values for the number of graphite sheet layers, radiator area, and thickness that would meet the allowable temperature of the cryogenic cooler.