• 제목/요약/키워드: thermal contraction

검색결과 150건 처리시간 0.024초

CICC 형태의 초전도 버스 선에서 냉각 및 자기장에 의한 응력 해석 (Analysis of the stresses induced by magnetic field and cooling in the CICC type superconducting bus-line)

  • 이호진;남현일;김기백;홍계원
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제2권2호
    • /
    • pp.20-25
    • /
    • 2000
  • A CICC type superconducting bus-line electrically connecting a superconducting magnet to a power supply is cooled down to low temperature under the external magnetic field during operation. The thermal contraction during the cooling may be constrained by the supports which are installed to protect the bus-line from Lorenz magnetic forces. This constrained contraction causes thermal stresses in the bus-line to release thermal contraction. The minimum stress conditions in the bus-line may be optimized by controlling the supporting arrangement considering the thermal contraction and the external field. The analytical method to find optimal supports arrangement was suggested by using the beam theory, and numerical calculation using commercial code was performed to verify the suggested analytical optimization method.

  • PDF

연속주조용 탄소강에서 상변화에 따른 열팽창 및 수축 거동 (Thermal Expansion and Contraction Characteristics of Continuous Casting Carbon Steels)

  • 김현철;이재현;권오덕;임창희
    • 한국재료학회지
    • /
    • 제13권3호
    • /
    • pp.137-143
    • /
    • 2003
  • The air gap between the metal and mold, formed by shrinkage during solidification, causes surface and subsurface cracks in the continuous casting process. Molten crack on the surface might also occur due to improper heat transfer between them. In order to compensate the air gap in mold design, the thermal contraction is an essential factor. In this study, the thermal contraction and expansion behaviors were examined from the ($\alpha$ and pearlite)/${\gamma}$ to ${\gamma}$/$\delta$ transformations in continuous casting steels by the commercial dilatometer and the self- assembled dilatometer with laser distance measurement. It was found that the thermal contraction and expansion behaviors were very dependant on the phase transformation of the ${\gamma}$/$\delta$ as well as ($\alpha$ and pearlite)/${\gamma}$. The sudden volume change from $\delta$ to ${\gamma}$ which might cause cracks in the continuous casting process, was observed on cooling just below the melting temperature by the self-assembled dilatometer.

Establishment of CTE Measurement Procedure for PPLP at 77 K for HTS Power Cables using Double Extensometers

  • Dedicatoria, Marlon J.;Dizon, John Ryan C.;Shin, Hyung-Seop;Sim, Ki-Duk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권4호
    • /
    • pp.24-27
    • /
    • 2012
  • The measurement of the coefficient of thermal expansion (CTE) of polypropylene laminated paper (PPLP) as electric insulating material is important for its practical superconducting device application. The thermal strain induced to HTS tapes and its insulating material during cooling from room temperature might largely affect the critical current ($I_c$) of HTS tapes. In this study, the thermal contraction of PPLP material was measured during cooling from 300 K to 77 K using double extensometers. Initially, the CTE of a brass tape was measured and it was compared with a reference data. It was found that the measured thermal expansion data of the brass material approaches that of the reference one. Based on the results, it was then confirmed that the measurement technique could be applied to thin and flexible samples. Therefore, the same measurement procedure was applied to PPLP material using double extensometers. As a result, the linear CTE of the PPLP at 77 K has been measured to be ${\sim}15.3{\times}10^{-6}/K$. Also, it was found that the thermal contraction characteristics of PPLP was dominated by polypropylene on the cross direction (higher thermal contraction) while it was dominated by Kraft paper on the machine direction (lower thermal contraction). Overall, this measurement procedure could be adopted for the determination of CTE of flexible materials such as PPLP.

저온하에서 시차열 수축에 의한 WMA 콘크리트의 휨강도 변화 (Variation of Flexural Strength of Warm-mix Asphalt Concretes Due to Differential Thermal Contraction at Low Temperatures)

  • 최정순;김성운;김광우
    • 한국도로학회논문집
    • /
    • 제14권4호
    • /
    • pp.63-72
    • /
    • 2012
  • PURPOSES : Hot-mix asphalt(HMA) concretes show a trend of strength increase at low temperature due to binder stiffness increase, but strength decrease below a ceratin low temperature. This is due to the differential thermal contraction(DTC) which is induced by a significant difference in coefficients of thermal contraction between aggregate and asphalt which is coated around the aggregate. This DTC damage is well known to occur in HMA concrete, but is not yet investigated in warm-mix asphalt(WMA) concretes. METHODS : To evaluate DTC damage on WMA in this study, the flexural strength($S_f$) of WMA concretes, which were produced at $30{\sim}40^{\circ}C$ lower temperature, was evaluated in comparison with that of HMA at -5, -15 and $-25^{\circ}C$. RESULTS : Most of WMA and HMA mixtures showed flexural strength increase down to $-15^{\circ}C$ and decrease below $-15^{\circ}C$. this type of strength reduction below $-15^{\circ}C$ can e explained as the effect of differential thermal contraction that is a consequence of the large difference in coefficients of thermal contraction between aggregate and asphalt. the property reduction of WMA is similar the result of previous works dealt with HMA mixtures. CONCLUSIONS : Even though there is some differences by materials used, the WMA concretes showed a significantly lower DTC damage than HMA concrete at low temperature at ${\alpha}$=0.05 level.

Evaluation of mechanical and thermal properties of insulation materials for HTS power devices at liquid nitrogen temperature

  • Shin, Hyung-Seop;Diaz, Mark Angelo
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권2호
    • /
    • pp.53-57
    • /
    • 2017
  • In superconducting power devices including power cables in which high temperature superconducting (HTS) tapes are utilized, a reliable electrical insulation should be achieved for its maximum performance. For an efficient design of HTS superconducting devices, a comparative evaluation of the mechanical and thermal propperties for various insulation materials at cryogenic temperatures is required. Especially, in the process of the property evaluation of the sheet-shaped insulation materials, anisotropy according to the machining direction should be considered because the mechanical and thermal properties are significantly influenced by the sample orientation. In this study, the cryogenic thermal and mechanical properties of various insulation material sheets such as PPLP, Cryoflex, Teflon, and Kapton were determined considering sample orientation. All samples tested at cryogenic temperature showed significantly higher tensile strength as compared with that of room temperature. The ultimate tensile strength at both temperature conditions significantly depended upon the sample orientation. The thermal properties of the insulation materials exhibited a slight difference among samples depending on the orientation: for the PPLP and Cryoflex, the CD orientation showed larger thermal contraction up to 77 K as compared to the MD one. MD samples in PPLP and Cryoflex showed a lower CTE and thermal contraction which made it more promising as an insulation material due to its comparable CTE with HTS CC tapes.

터보 디젤 엔진용 배기매니폴드의 열변형 해석 (Thermal Deformation Analysis of Exhaust Manifold for Turbo Diesel Engine in Consideration of Flange Design)

  • 김범근;이은현;최복록
    • 대한기계학회논문집A
    • /
    • 제31권3호
    • /
    • pp.338-343
    • /
    • 2007
  • Thermal deformation of cast iron exhaust manifold for turbo diesel engine is investigated by finite element analysis (FEA). The FE model included the temperature dependent material properties as well as the interactions between exhaust manifold, cylinder head and fasteners. It also considers the sliding behavior of the flanges of exhaust manifold on cylinder head when either expansion or contraction of the exhaust manifold exceeds the fastener pretension. The result of analysis revealed that remarkable thermal deformation along the longitudinal direction. Compressive plastic deformation at high temperature remained tensile stress in manifold and resulted in longitudinal contraction at ambient temperature. The amount of contraction at each fastener position was predicted and compared with experimental results. Analysis results revealed that the model predicted deformation qualitatively, but more elaborated cyclic hardening behavior would be necessary to predict the deformation quantitatively.

2차 가열에 의한 국소의치상의 변형에 관한 실험적 연구 (EFFECT OF SECONDARY HEAT TREATMENT ON DIMENSIONAL CHANGES OF ACRYLIC RESIN PARTIAL DENTURE BASE)

  • 장병건;이호용
    • 대한치과보철학회지
    • /
    • 제27권1호
    • /
    • pp.193-211
    • /
    • 1989
  • The purpose of this study was to investigate the effect of secondary heat treatment on dimensional changes of acrylic resin partial denture base. For this study, 6 specimens were made: 2 groups of 2 specimens, each was treated with $125^{\circ}C$ dry heat and glycerine heat for 3 minutes, and the others were prepared for control group. The change of the internal diameter of specimens were measured after 3 hrs, 1 day, 1 week, 2 weeks, 4 weeks by three-dimensional space analyzer. The results were as follows : 1. All of the acrylic resin denture bases showed tissue ward thermal contraction. 2. Thermal contraction of the mesial area reinforced with metal framework was lesser than that of the distal area without metal framework. 3. Thermal contraction of the lingual flange reinforced with metal framework occured more slowly than that of the buccal flange without the metal framework. 4. The thermal contraction of dry heat treated acrylic resin base, compared to glycerine heat group, was moderately greater and occurred acutely.

  • PDF

열수축을 하는 필라멘트 와인딩 복합재료 관의 설계 (Design of Filament Wound Composite Tubes under Thermal Contraction)

  • 정태은;신효철
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2407-2417
    • /
    • 1993
  • Thermal deformations and stresses due to temperature changes are the serious problems in cryogenic structures such as the torque tube in a superconducting generator, In this paper, the equations of thermal expansion coefficients expressed only by material properties and winding angles are derived for the filament wound composite tubes. The experimental results of thermal contraction of CFRP tubes are compared with those from theoretical approach. Composite tubes with optimally regulated thermal expansion coefficient are designed on the basis of the study for the torque tube in the superconducting generator with temperature distributions varying from 300K to 4.2 K. The filament winding angle of composites resisting thermal stresses properly is sought by the finite element method using layered shell elements. The results show that the composite tubes designed for the requirements in cryogenic environments can effectively cope with the thermal stress problem.

열변형 해석을 이용한 냉장고 수축팽창 소음저감 (Reduction of contraction and expansion noise of refrigerator using thermal deformation analysis)

  • 박성규;김원진
    • 한국음향학회지
    • /
    • 제38권3호
    • /
    • pp.344-351
    • /
    • 2019
  • 본 연구에서는 수축 및 팽창 소음 발생 메커니즘을 분석하고, 냉장고 운전 중에 소음발생 빈도를 줄이기 위한 효과적인 방법을 제안하였다. 냉장고의 수축팽창음 발생 시에 제품의 품질비용 상승에 영향을 주기 때문에 저감이 필요하다. 먼저, 무향실에서 측정된 음압 신호를 이용하여 주파수 스펙트럼 분석을 수행하여 소음의 특성과 발생 빈도를 분석하였다. 둘째, 열변형 해석을 수행하여 소음원의 위치를 예측했다. 분석결과에서 가장 큰 열변형은 냉동실의 왼쪽 내부 케이스의 중간에서 발생하였다. 또한 음원 위치의 가속도 레벨을 평가한 결과, 소음을 발생시키는 내부 부품이 냉동실의 세 번째 선반임을 알 수 있었다. 냉장고의 중앙 ABS(Acrylonitrile Butadiene Styrene) 두께 증가에 의한 열변형 저감을 통하여 수축팽창음을 저감할 수 있는 방법을 제안하였다.

Thermal volume change of saturated clays: A fully coupled thermo-hydro-mechanical finite element implementation

  • Wang, Hao;Qi, Xiaohui
    • Geomechanics and Engineering
    • /
    • 제23권6호
    • /
    • pp.561-573
    • /
    • 2020
  • The creep and consolidation behaviors of clays subjected to thermal cycles are of fundamental importance in the application of energy geostructures. This study aims to numerically investigate the physical mechanisms for the temperature-triggered volume change of saturated clays. A recently developed thermodynamic framework is used to derive the thermo-mechanical constitutive model for clays. Based on the model, a fully coupled thermo-hydro-mechanical (THM) finite element (FE) code is developed. Comparison with experimental observations shows that the proposed FE code can well reproduce the irreversible thermal contraction of normally consolidated and lightly overconsolidated clays, as well as the thermal expansion of heavily overconsolidated clays under drained heating. Simulations reveal that excess pore pressure may accumulate in clay samples under triaxial drained conditions due to low permeability and high heating rate, resulting in thermally induced primary consolidation. Results show that four major mechanisms contribute to the thermal volume change of clays: (i) the principle of thermal expansion, (ii) the decrease of effective stress due to the accumulation of excess pore pressure, (iii) the thermal creep, and (iv) the thermally induced primary consolidation. The former two mechanisms mainly contribute to the thermal expansion of heavily overconsolidated clays, whereas the latter two contribute to the noticeable thermal contraction of normally consolidated and lightly overconsolidated clays. Consideration of the four physical mechanisms is important for the settlement prediction of energy geostructures, especially in soft soils.