• Title/Summary/Keyword: thermal circuit

Search Result 657, Processing Time 0.027 seconds

A High Efficiency, High Power-Density GaN-based Triple-Output 48V Buck Converter Design (GaN MOSFET을 이용한 고밀도, 고효율 48V 버스용 3-출력 Buck Converter 설계)

  • Lee, Sangmin;Lee, Seung-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.412-419
    • /
    • 2020
  • In this study, a 70 W buck converter using GaN metal-oxide-semiconductor field-effect transistor (MOSFET) is developed. This converter exhibits over 97 % efficiency, high power density, and 48 V-to-12 V/1.2 V/1 V (triple output). Three gate drivers and six GaN MOSFETs are placed in a 1 ㎠ area to enhance power density and heat dissipation capacity. The theoretical switching and conduction losses of the GaN MOSFETs are calculated. Inductances, capacitances, and resistances for the output filters of the three buck converters are determined to achieve the desired current, voltage ripples, and efficiency. An equivalent circuit model for the thermal analysis of the proposed triple-output buck converter is presented. The junction temperatures of the GaN MOSFETs are estimated using the thermal model. Circuit operation and temperature analysis are evaluated using a circuit simulation tool and the finite element analysis results. An experimental test bed is built to evaluate the proposed design. The estimated switch and heat sink temperatures coincide well with the measured results. The designed buck converter has 130 W/in3 power density and 97.6 % efficiency.

A Low-Power Current-Mode CMOS Voltage Reference Circuit (저전력 전류모드 CMOS 기준전압 발생 회로)

  • 권덕기;오원석
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1077-1080
    • /
    • 1998
  • In this paper, a simple low-power current-mode CMOS wotage reference circuit is proposed. The reference circuit of enhancement-mode MOS transistors and resistors. Temperature compensation is made by adding a current component proportional to a thermal voltage to a current component proportional to a threshold voltage. The designed circuit has been simulated using a $0.65\mu\textrm{m}$ n-well CMOS process parameters. The simulation results show that the reference circuit has a temperature coefficient less than $7.8ppm/^{\circ}C$ and a power-supply(VDD) coefficient less than 0.079%/V for a temperature range from $-30^{\circ}C$ to $130^{\circ}C$ and a VDD range from 4.0V to 12V. The power consumption is 105㎼ for VDD=5V and $T=30^{\circ}C.$ The proposed reference circuit can be designed to generate a wide range of reference voltages owing to its current-mode operation.

  • PDF

Development of Generator Excitation System with Main/Standby Controller in In-chun Thermal power plant #4 (인천화력 4호기 발전기용 주/부 제어기를 갖는 정지형 여자시스템 개발)

  • 류호선;임익헌
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.407-410
    • /
    • 1999
  • Potential-source controlled excitation system had been developed for synchronous generator in In-Chun thermal power plant #4 by KEPRI. This paper describes the characteristics of Main/Standby control system employed analog, digital circuit devices (hybrid type) and 3 PCRs(Phase Controlled Rectifier)

  • PDF

Thermal Analysis of IPMSM with Water Cooling Jacket for Railway Vehicles

  • Park, Chan-Bae
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.882-887
    • /
    • 2014
  • In this paper, the water cooling method among the forced coolant cooling methods is considered to be applied to the 110kW-class IPMSM for railway vehicles. First, basic thermal property analysis of the IPMSM is conducted using the three-dimensional thermal equivalent network method. Then, based on the results of the basic thermal property analysis, some design requirements for the water cooling jacket are deduced and a basic design of the water cooling jacket is carried out. Finally, thermal equivalent circuit of the water cooling jacket is attached to the IPMSM's 3D thermal equivalent network and then, the basic thermal and effectiveness analysis are conducted for the case of applying the water cooling jacket to the IPMSM. In the future, the thermal variation trends inside the IPMSM by the application of the water cooling jacket is expected to be quickly and easily predicted even at the design step of the railway traction motor.

Design of a Thermal Energy Harvesting Circuit With MPPT Control (MPPT 기능을 갖는 열전 에너지 하베스팅 회로)

  • Kim, Su-jin;Park, Kum-young;Yoon, Eun-jung;Oh, Won-seok;Yu, chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.255-258
    • /
    • 2012
  • In this paper, with a thermoelectric device using the seebeck effect which generates electromotive force by temperature difference generates electric energy an energy harvesting circuit using MPPT(Maximun Power Point Traking) control is designed. After periodically sampling the open voltage of the thermoelectric device, the 1/2 voltage of open voltage which in a maximum power point is maintained through MPPT control circuit and harvested energy from thermoelectric device is delivered to load through a switch. The proposed thermal energy harvesting circuit is designed with $0.35{\mu}m$ CMOS process and the chip area excluding pads is $1168.7{\mu}m{\times}541.3{\mu}m$.

  • PDF

An Investigation on Enhencing Thermal Efficiency of a Hydrogen Fueled 2 Stroke Free-piston Engine with Reverse Uni-flow Scavenging (역단류 소기방식을 갖는 2행정 프리피스톤 수소기관의 열효율 향상에 관한 연구)

  • Byun, Chang-Hee;Baek, Dae-Ha;Lee, Jong-Tae
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.3
    • /
    • pp.299-304
    • /
    • 2011
  • A hydrogen fueled 2 stroke free-piston engine with reverse uni-flow scavenging have a advantageous structure for the backfire occurrence, but it can reduce thermal efficiency by the circuit-flow to go through a exhaust-port. In this research, varied boost pressure, SVOT and exhaust pressure are used in a 2stroke free-piston engine with hydrogen fueled for studying the possibility of increasing thermal efficiency of free-piston hydrogen engine. As a result, to increase thermal efficiency of free-piston are suitable to supply the mixture after port closed the exhaust rater than to use the scanvenging. And it was increased by the exhaust pressure, to achieve it must be used the lean-mixture at SVOT aBDC $34^{\circ}$.

Assessment of thermal fatigue induced by dryout front oscillation in printed circuit steam generator

  • Kwon, Jin Su;Kim, Doh Hyeon;Shin, Sung Gil;Lee, Jeong Ik;Kim, Sang Ji
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1085-1097
    • /
    • 2022
  • A printed circuit steam generator (PCSG) is being considered as the component for pressurized water reactor (PWR) type small modular reactor (SMR) that can further reduce the physical size of the system. Since a steam generator in many PWR-type SMR generates superheated steam, it is expected that dryout front oscillation can potentially cause thermal fatigue failure due to cyclic thermal stresses induced by the transition in boiling regimes between convective evaporation and film boiling. To investigate the fatigue issue of a PCSG, a reference PCSG is designed in this study first using an in-house PCSG design tool. For the stress analysis, a finite element method analysis model is developed to obtain the temperature and stress fields of the designed PCSG. Fatigue estimation is performed based on ASME Boiler and pressure vessel code to identify the major parameters influencing the fatigue life time originating from the dryout front oscillation. As a result of this study, the limit on the temperature difference between the hot side and cold side fluids is obtained. Moreover, it is found that the heat transfer coefficient of convective evaporation and film boiling regimes play an essential role in the fatigue life cycle as well as the temperature difference.

Thermal-hydraulic Design of A Printed-Circuit Steam Generator for Integral Reactor (일체형원자로 인쇄기판형 증기발생기 열수력학적 설계)

  • Kang, Han-Ok;Han, Hun Sik;Kim, Young-In
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.77-83
    • /
    • 2014
  • The vessel of integral reactor contains its major primary components such as the fuel and core, pumps, steam generators, and a pressurizer, so its size is proportional to the required space for the installation of each component. The steam generators take up the largest volume of internal space of reactor vessel and their volumes is substantial for the overall size of reactor vessel. Reduction of installation space for steam generators can lead to much smaller reactor vessel with resultant decrease of overall cost for the components and related facilities. A printed circuit heat exchanger is one of the compact types of heat exchangers available as an alternative to conventional shell and tube heat exchangers. Its name is derived from the procedure used to manufacture the flat metal plates that form the core of the heat exchanger, which is done by chemical milling. These plates are then stacked and diffusion bonded, converting the plates into a solid metal block containing precisely engineered fluid flow passages. The overall heat transfer area and pressure drops are evaluated for the steam generator based on the concept of the printed circuit heat exchanger in this study. As the printed circuit heat exchanger is known to have much larger heat transfer area density per unit volume, we can expect significantly reduced steam generator compared to former shell and tube type of steam generator. For the introduction of new steam generator, two design requirements are considered: flow area ratio between primary and secondary flow paths, and secondary side parallel channel flow oscillation. The results show that the overall volume of the steam generator can be significantly reduced with printed circuit type of steam generator.