• Title/Summary/Keyword: thermal circuit

Search Result 654, Processing Time 0.036 seconds

A Review Method of Calculation Results on Cable Ampacity using the Transformation to Electric Equivalent Circuit from Cable Thermal Circuit (케이블 열회로의 전기적 등가회로 변환을 이용한 케이블 허용전류 검토 방법)

  • Kang, Yeon-Woog;Kim, Min-Ju;Jang, Tae-In;Park, Jin-Woo;Park, Hung-Sok;Kang, JI-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.738-744
    • /
    • 2016
  • Current rating of a power cable can be calculated by the maximum allowable temperature in an insulating material considering the heat transfer from cable conductor. Therefore, it is very important to calculate the current rating using electrical equivalent circuit by calculated cable thermal circuit parameters but, it has not been fully investigated yet. In this paper, in order to determine the current rating of power cable, conventional calculation method has been reviewed considering the conductor resistance, loss factor of sheath, dielectric losses and thermal resistances based on the maximum allowable temperature of 345 kV $2500mm^2$ XLPE cable. To confirm the calculation result of the current rating, the conductor temperature should be examined whether it reaches the maximum allowable temperature by the thermal equivalent circuit of the cable. Then, utilizing EMTP (Electro-Magnetic Transient Program) which is a conventional program for electrical circuit, the thermal equivalent circuit was transformed to an electric equivalent circuit using an analogous relationship between thermal circuit and electrical circuit, and temperature condition including cable conductor, sheath, cable jacket could be calculated by the current rating of 345 kV $2500mm^2$ XLPE cable.

Thermal Compensation Circuit with Improved Compensation Characteristic for Power Amplifier (개선된 보상특성을 갖는 증폭기용 온도보상회로)

  • Jung, Young-Bae
    • Journal of IKEEE
    • /
    • v.16 no.3
    • /
    • pp.177-181
    • /
    • 2012
  • This paper introduces a thermal compensation circuit with improved compensation characteristic for amplifiers to provide stable output power regardless environmental temperature. The proposed thermal compensation circuit is composed of two branchline couplers having two diodes between them. And, the thermistor whose resistance varies significantly with temperature inversely and a operational amplifiers, so called as OP-amp, control the diodes in the compensations circuit to realize more effective thermal compendation characteristic compared with conventional circuit.

Study on the Thermal Transient Response of TSV Considering the Effect of Electronic-Thermal Coupling

  • Li, Chunquan;Zou, Meng-Qiang;Shang, Yuling;Zhang, Ming
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.356-364
    • /
    • 2015
  • The transmission performance of TSV considering the effect of electronic-thermal coupling is an new challenge in three dimension integrated circuit. This paper presents the thermal equivalent circuit (TEC) model of the TSV, and discussed the thermal equivalent parameters for TSV. Si layer is equivalent to transmission line according to its thermal characteristic. Thermal transient response (TTR) of TSV considering electronic-thermal coupling effects are proposed, iteration flow electronic-thermal coupling for TSV is analyzed. Furthermore, the influences of TTR are investigated with the non-coupling and considering coupling for TSV. Finally, the relationship among temperature, thickness of $SiO_2$, radius of via and frequency of excitation source are addressed, which are verified by the simulation.

A Study on the Equivalent Thermal Circuit for HTS Power Cable (초전도 전력케이블의 열 등가 회로에 관한 연구)

  • Lee, Su-Kil;Lee, Heung-Jae
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.61-65
    • /
    • 2010
  • To develop the thermal analysis method for the thermal behavior of HTS power cable system, cooled with sub-cooled liquid nitrogen, new thermo dynamic model for HTS cable system is introduced. The introduced thermal model is mainly modified from the thermal circuit following to IEC60287 for underground power cable systems such as XLPE or paper wrapped insulation cables. The thermal circuits for HTS cables are similar to the forced cooled underground cable system but the major thermal parameters and the configuration is apparently different to the normal cable systems so there has been no proposals in this field of analysing method. In this paper, 154kV HTS cable system has been introduced as an aspects of thermal models and a thermal circuit is proposed for the fundamentals on the dynamic rating systems for the HTS cable system. By using the thermal circuit developed in this paper, the optimal controls on the sub-cooling system's capacity become possible and it is expected to make the efficiency of HTS cable higher than conventional static controls.

Design of a Thermal Energy Harvesting Circuit with MPPT Control (MPPT 제어 기능을 갖는 열에너지 하베스팅 회로 설계)

  • Yoon, Eun-Jung;Kim, Su-Jin;Park, Kum-Young;Oh, Won-Seok;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2487-2494
    • /
    • 2012
  • In this paper, a thermal energy harvesting circuit with MPPT control is designed. MPPT(Maximum Power Point Tracking) control function is implemented using the linear relationship between the open-circuit voltage of a thermoelectric generator(TEG) and its MPP voltage. The designed MPPT control circuit traces the maximum power point by periodically sampling the open circuit voltage of a TEG, makes the reference voltages using sampled voltage and delivers the maximum available power to load. Simulation results show that the maximum power efficiency of the designed circuit is 94%. The proposed thermal energy harvesting circuit is designed with $0.35{\mu}m$ CMOS process, and the chip area except PAD is $1168.7{\mu}m{\times}541.3{\mu}m$.

Design of a New Thermal shut Down Protection Circuit for LED Driver IC Applications (LED 구동회로를 위한 새로운 과열방지회로 설계)

  • Heo, Yun-Seok;Jung, Jin-Woo;Park, Won-Kyoung;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5832-5837
    • /
    • 2011
  • In this paper, we designed a thermal shutdown block for LED applications using a 1 ${\mu}m$ CMOS process. The proposed thermal shutdown protection circuit has been designed with a shut-off temperature of $120^{\circ}C$ and a restart temperature of $90^{\circ}C$ which are suitable conditions for LED driver IC. Also, we got SPICE simulation results of the circuit about process variation of the semiconductor fabrication. From simulation data, process variation rate of the proposed circuit are within 7 % which are good results compared with conventional BJT current mirror type circuit. Finally, we confirmed that the thermal shutdown circuit has good thermal protection function within a LED driver IC.

A Study on the Development of 25.8kV 25kA Gas Circuit Breaker Using Thermal-Expansion Principle(II) (25.8kV 25kA 열팽창분사식 가스차단기 개발에 관한 연구(II) - 팽창실 용적이 차단성능에 미치는 영향 -)

  • Song, K.D.;Park, K.Y.;Shin, Y.J.;Kim, K.S.;Kim, J.G.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.80-82
    • /
    • 1996
  • This paper deals with the effects of the volume of thermal expansion chamber on the interrupting performance in thermal expansion type 25.8kV 25kA gas circuit breaker. Model interrupters with 5 type thermal expansion chamber were designed and manufactured. Short-circuit tests were carried out for those model interrupters with 25kA breaking current. Pressure rise in the expansion chamber were measured and compared with the calculated one which was obtained from a self-developed program in our team. The analysis on the interrupting performance of each model interrupter has been done on the base of the short-circuit test results.

  • PDF

Parametric Study and Optimized Thermal Design of a High-Voltage Vacuum Circuit Breaker (고압진공차단기의 정격전류상승을 위한 GAE해석)

  • Ahn, Heui-Sub;Lee, Jong-Chul;Choi, Jong-Ung;Oh, Il-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.39-42
    • /
    • 2002
  • In this study, the computational heat transfer of the high-voltage vacuum circuit breaker was investigated. Higher normal current-ratings and stabilized thermal characteristics become more important in existing circuit breakers in order to satisfy market needs. Increases in current-ratings have an even greater effect on the Joule heating in the main circuit of the breakers. The thermal design must account for this increase in heat produced for the breaker to meet various temperature-rise limits set by industry standards. We are studying to enhance the normal current-ratings without major frame change of our present production models. As the method used in this research, we performed the computational analysis using the commercial Package, ICEPAK. We could get optimized thermal design suitable for 25% upgraded normal current-ratings through parametric study.

  • PDF

Thermal Stability Evaluation of SPDs with Parallel or Series Circuit Assemblies (SPD 직병렬 조합회로의 열적 안정성 평가)

  • Eom, Ju-Hong;Cho, Sung-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.265-269
    • /
    • 2005
  • Surge protective devices can be divided into three categories based on the circuit assembly: a parallel circuit type that considers the surge current amount within the device, a series circuit type that considers the voltage and single circuit type that uses a single element. However, when assembling SPDs, there are many things including function and safety to be taken into consideration because they are directly related to the performance and safety of the device. In this paper, we executed an experimental comparative study of performance and thermal stability of each SPD type using lightning surge generator and thermal image camera.

  • PDF

Electrical modelling for thermal behavior and gas response of combustible catalytic sensor (접촉연소식 센서의 열 특성 및 가스반응의 모델링)

  • Lee, Sang-Mun;Song, Kap-Duk;Joo, Byung-Su;Lee, Yun-Su;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.34-39
    • /
    • 2006
  • This study provides the electrical model of combustible catalytic gas sensor. Physical characteristics such as thermal behavior, resistance change were included in this model. The finite element method analysis for sensor device structure showed that the thermal behavior of sensor is expressed in a simple electrical equivalent circuit that consists of a resistor, a capacitor and a current source. This thermal equivalent circuit interfaces with real electrical circuit using two parts. One is 'power to heat' converter. The other is temperature dependent variable resistor. These parts realized with the analog behavior devices of the SPICE library. The gas response tendency was represented from the mass transferring limitation theory and the combustion theory. In this model, Gas concentration that is expressed in voltage at the model, is converted to heat and is flowed to the thermal equivalent circuit. This model is tested in several circuit simulations. The resistance change of device, the delay time due to thermal capacity, the gas responses output voltage that are calculated from SPICE simulations correspond well to real results from measuring in electrical circuits. Also good simulation result can be produced in the more complicated circuit that includes amplifier, bios circiut, buffer part.