• Title/Summary/Keyword: thermal change

Search Result 3,140, Processing Time 0.039 seconds

A Numerical Study on the Effects of Urban Forest and Street Tree on Air Flow and Temperature (도시숲과 가로수가 대기 흐름과 기온에 미치는 영향에 관한 수치 연구)

  • Kang, Geon;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1395-1406
    • /
    • 2022
  • This study investigated the effects of the urban forest and street trees on flow and temperature distribution in the Daegu National Debt Redemption Movement Memorial Park. For this, we implemented tree-drag and tree-cooling parameterization schemes in a computational fluid dynamics (CFD) model and validated the simulated wind speeds, wind directions, and air temperatures against the measured ones. We used the wind speeds, wind directions, air temperatures predicted by the local data assimilation and prediction system (LDAPS) as the inflow boundary conditions. To investigate the flow and thermal characteristics in the presence of trees in the target area, we conducted numerical experiments in the absence and presence of trees. In the absence of trees, strong winds and monotonous flows were formed inside the park, because there were no obstacles inducing friction. The temperature was inversely proportional to the wind speed. In the presence of trees, the wind speeds(temperatures) were reduced by more than 40 (5)% inside the park with a high planting density due to the tree drag (cooling) effect, and those also affected the wind speeds and temperatures outside the park. Even near the roadside, the wind speeds and temperatures were generally reduced by the trees, but the wind speeds and air temperatures increased partly due to the change in the flow pattern caused by tree drag.

Predicting Habitat Suitability of Carnivorous Alert Alien Freshwater Fish (포식성 유입주의 어류에 대한 서식처 적합도 평가)

  • Taeyong, Shim;Zhonghyun, Kim;Jinho, Jung
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.1
    • /
    • pp.11-19
    • /
    • 2023
  • Alien species are known to threaten regional biodiversity globally, which has increased global interest regarding introduction of alien species. The Ministry of Environment of Korea designated species that have not yet been introduced into the country with potential threat as alert alien species to prevent damage to the ecosystem. In this study, potential habitats of Esox lucius and Maccullochella peelii, which are predatory and designated as alert alien fish, were predicted on a national basis. Habitat suitability was evaluated using EHSM (Ecological Habitat Suitability Model), and water temperature data were input to calculate Physiological Habitat Suitability (PHS). The prediction results have shown that PHS of the two fishes were mainly controlled by heat or cold stress, which resulted in biased habitat distribution. E. lucius was predicted to prefer the basins at high latitudes (Han and Geum River), while M. peelii preferred metropolitan areas. Through these differences, it was expected that the invasion pattern of each alien fish can be different due to thermal preference. Further studies are required to enhance the model's predictive power, and future predictions under climate change scenarios are required to aid establishing sustainable management plans.

Analysis of Surface Temperature Change and Heat Dissipation Performance of Road Pavement with Buried Circulating Water Piping (열매체 순환수 배관이 매설된 도로 포장체의 표면 온도 변화와 방열 성능 분석)

  • Byonghu Sohn;Muhammad Usman;Yongki Kim
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.2
    • /
    • pp.8-19
    • /
    • 2023
  • Hydronic heated road pavement (HHP) systems have well studied and documented by many researchers. However, most of the systems run on asphalt, only a few are tested with concrete, and there rarely is a comparison between those two common road materials in their heating and cooling performance. The aim of this study is to investigate the thermal performance of the HHP, such as heat dissipation performance in winter season while focusing on the surface temperature of the concrete and asphalt pavement. For preliminary study a small-scale experimental system was designed and installed to evaluate the heat transfer characteristics of the HHP in the test field. The system consists of concrete and asphalt slabs made of 1 m in width, 1 m in length, and 0.25 m in height. In two slabs, circulating water piping was embedded at a depth of 0.12 m at intervals of 0.16 m. Heating performance in winter season was tested with different inlet temperatures of 25℃, 30℃, 35℃ and 40℃ during the entire measurement period. The results indicated that concrete's heating performance is better than that of asphalt, showing higher surface temperatures for the whole experiment cases. However, the surface temperature of both concrete and asphalt pavement slabs remained above 0℃ for all experimental conditions. The heat dissipation performance of concrete and asphalt pavements was analyzed, and the heat dissipation of concrete pavement was greater than that of asphalt. In addition, the higher the set temperature of the circulating water, the higher the heat dissipation. On the other hand, the concrete pavement clearly showed a decrease in heat dissipation as the circulating water set temperature decreased, but the decrease was relatively small for the asphalt pavement. Based on this experiment, it is considered that a circulating water temperature of 20℃ or less is sufficient to prevent road ice. However, this needs to be verified by further experiments or computational fluid dynamic (CFD) analysis.

Comparison of Hsp90 and CYP1A Expression Patterns by Water Temperature Stress in Atlantic Salmon (Salmo salar) (대서양 연어(Salmo salar)의 수온 스트레스에 의한 Hsp90 및 CYP1A 발현 양상 비교)

  • Kang, Han Seung;Song, Jae-Hee;Kang, Hee Woong
    • Journal of Marine Life Science
    • /
    • v.3 no.2
    • /
    • pp.51-58
    • /
    • 2018
  • Variations in water temperature are known to affect almost every part of fish physiology. The rise in water temperature due to climate change can physically damage fish. This study was conducted to evaluate the health status of the Atlantic salmon (Salmo salar) at high water temperature (20℃) than the optimum water temperature (15℃). Liver tissue exerts important metabolic functions in thermal adaptation. Therefore, liver tissue was used in this study. The evaluation method is to develop the biomarker gene using NGS RNAseq analysis and to examine the expression pattern using RT-qPCR analysis. The NGS RNAseq analysis revealed 1,366 differentially expressed genes, among which 880 genes were increase expressed and 486 genes were decrease expressed. The biomarker genes are such as heat shock protein 90 alpha (Hsp90α), heat shock protein 90 beta (Hsp90β) and cytochrome P450 1A (CYP1A). The selected genes are sensitive to changes in water temperature through NGS RNAseq analysis. Expression patterns of these genes through RT-qPCR were similar to those of NGS RNAseq analysis. The results of this study can be applied to other fish species and it is considered to be useful industrially.

Revision of Repair Materials Performance Requirement for Concrete Structures (콘크리트 구조물 단면복구공사 보수재료 품질기준개선)

  • Lee, Il Keun;Kim, Ki Hwan;Kim, Hong Sam;Yun, Sung Hwan;Kim, Woo Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.9-20
    • /
    • 2023
  • For highway concrete structures, the deterioration of the structure is accelerated due to the increase in the use of deicing materials, and sectional repair work is being frequently carried out to restore performance. However, after the repair work, re-damage such as cracks, delamination, and poor bond performance is exhibited in the repaired sectional area. In this study, overseas repair material requirements were first analyzed, and present domestic requirements were improved repair material performance through field surveys of common concrete structures, laboratory experiments, and test construction on a disused concrete bridge. In addition, performancebased quality requirements were presented so that all materials that meet the required performance can be applied, and different test methods for each material were unified into concrete test methods for consistent test results analysis. The considered performance requirements were compression strength, bending strength, and bond strength for structural properties, and length change rate, crack resistance, thermal expansion coefficient, and elasticity coefficient were for dimensional behavior. For resistance to chloride penetration resistance and freeze-thaw resistance were presented as durability. The proposed requirements for concrete repair materials are expected to contribute to the improvement of the quality of concrete sectional repair work in Korea.

Performance and Characterization of Ceramic Membrane by Phase Inversion-Extrusion Process with Polymer Binder Mixing (상전이-압출 알루미나 분리막 제조 공정에서 혼합 고분자 바인더 적용에 따른 성능 및 특성 평가)

  • Sojin Min;Ahrumi Park;Yongsung Kwon;Daehun Kim;You-In Park;Seong-Joong Kim;Seung-Eun Nam
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.439-446
    • /
    • 2023
  • Ceramic membranes are generally used for various industrial processes operating under extreme conditions because of its high thermal and chemical stability. However, due to the trade-off phenomenon of permeability and mechanical strength, preparation of high permeability-high strength membrane is necessary. In this study, the change in characteristics and performances of ceramic membranes was analyzed depending on the type of polymer binder and its mixing ratio. Because the solubility between solvent and polymer binder was higher in PSf (polysulfone) than in PES (polyethersulfone), the viscosity and discharge pressure of the PSf-based dope solution were higher than those of PES-based dope solution. When PSf was used as a polymer binder, ceramic membrane showed high mechanical strength and low water permeability due to the dense structure. On the other hand, in case of PES, the mechanical strength was slightly reduced and the water permeability was increased. It was confirmed that the optimum mixing ratio of the PSf and PES with high water permeability and mechanical strength was 9:1.

Thermogravimetric Analysis of Black Mass Components from Li-ion Battery (폐이차전지 블랙 매스(Black Mass) 구성 성분의 열중량 특성 분석)

  • Kwanho Kim;Kwangsuk You;Minkyu Kim;Hoon Lee
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.25-33
    • /
    • 2023
  • With the growth of the battery industry, a rapid increase in the production and usage of lithium-ion batteries is expected, and in line with this, much interest and effort is being paid to recycle waste batteries, including production scrap. Although much effort has been made to recycle cathode material, much attention has begun to recycle anode material to secure the supply chain of critical minerals and improve recycling rates. The proximate analysis that measures the content of coal can be used to analyze graphite in anode material, but it cannot accurately analyze due to the interaction between the components of the black mass. Therefore, in this study, thermogravimetric analysis of each component of black mass was measured as the temperature increased up to 950℃ in an oxygen atmosphere. As a result, in the case of cathode material, no change in mass was measured other than a mass reduction of about 5% due to oxidation of the binder and conductive material. In the case of anode material, except for a mass reduction of about 2% due to the binder, all mass reduction were due to the graphite(fixed carbon). In addition, metal conductors (Al, Cu) were oxidized and their mass increased as the temperature increased. Thermal analysis results of mixed samples of cathode/anode show similar results to the predictive values that can be calculated through each cathode and anode analysis results.

The Effects of Weekly Reports as a Method for Encouraging Student Questions in Middle School Science Instruction (중학교 과학 수업에서 학생 질문을 촉진하는 방안으로서의 주단위 보고서의 효과)

  • Kang, Hun-Sik;Lee, Sung-Mi;Kwon, Eun-Kyung;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.3
    • /
    • pp.385-392
    • /
    • 2006
  • This study investigated the effects of weekly reports as a method for encouraging student questions in middle school science instruction by focusing on student conceptual understanding, achievement, concept map, and perceptions of weekly reports. Seventh graders (N=211) from a middle school were assigned to control and weekly reports (WR) groups. All students were taught about the 'three states of matter', the 'motion of molecules', and the 'change of states and thermal energy' for eighteen class hours. Students in the WR group were required to write weekly reports for six of those periods. Results revealed that conception test scores for the WR group were significantly higher than those for the control group. Compared conception test scores by learning strategy, students using a surface learning strategy in the WR group scored significantly higher than those in the control group. While students employing a deep learning strategy in the WR group also performed better than those in the control group, the difference was relatively small. The scores of an achievement test and a concept map test for the WR group were significantly higher than those for the control group. However, there were no significant interactions between instruction and students' learning strategy in the two variables. It was also found that most students in the WR group positively perceived weekly reports.

Analysis of Damage Impact Range according to the NG/NH3 Mixing Ratio when applying Ammonia as Fuel for a Combined Cycle Power Plant using an ALOHA Program (ALOHA 프로그램을 활용한 복합화력발전소 내 암모니아 연료 적용 시 NG/NH3 혼소율에 따른 피해영향범위 분석)

  • Yoo Jeong Choi;Hee Kyung Park;Min Chul Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.73-84
    • /
    • 2024
  • In this study, a quantitative risk impact assessment is performed using an ALOHA program to identify the risks when applying ammonia as fuel for combined cycle power plants as one of the solutions of climate change. The worst and the alternative accident scenarios are established for the Sejong combined cycle power plant and the effective ranges are calculated in terms of flammability, thermal radiation, overpressure and toxicity. The analysis results show that the toxic risk is the most critical and the effective distance is highly proportional to the mixing ratio of natural gas and ammonia by showing the Pearson's correlation coefficient over 98% as 0.991, 0.987 and 0.989 for the Level Of Concern(LOC)-1, LOC-2 and LOC-3, respectively. In addition, the coefficients of linearity for LOC-1, LOC-2 and LOC-3 are calculated to 133, 70 and 29, respectively so it can be confirmed that the effective distance increases as the criterion decreases.

Time-Dependent Warpage Analysis for PCB Considering Viscoelastic Properties of Prepreg (Prepreg의 점탄성 특성을 고려한 PCB의 Time-Dependent Warpage 분석)

  • Chanhee Yang;Chang-Yeon Gu;Min Sang Ju;Junmo Kim;Dong Min Jang;Jae Seok Jang;Jin Woo Jang;Jung Kyu Kim;Taek-Soo Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.23-27
    • /
    • 2024
  • In this study, the time-dependent warpage behavior caused by the viscoelastic properties of prepreg in a printed circuit board (PCB) was analyzed by finite element method (FEM). The accurate viscoelastic properties of the prepreg were measured by stress relaxation test, which were then incorporated into constructed warpage analysis model. When the PCB was subjected to repeated thermal cycles, the warpage of the PCB was restored to its initial state when only the elastic properties of the prepreg were considered, but when the viscoelastic properties were also considered, the warpage was not restored and permanent warpage change occurred. The warpage analysis for three different types of prepreg was conducted to compare their mechanical reliability, and the results showed that materials with elastic properties dominating over viscoelastic properties experienced less warpage, resulting in better mechanical reliability.