• Title/Summary/Keyword: thermal change

Search Result 3,140, Processing Time 0.03 seconds

Characterization of Thermal Expansion Coefficients of Carbon/Epoxy Composite for Temperature Variation (탄소섬유 복합재료의 온도변화에 대한 열팽창계수 특성 변화 규명)

  • 김주식;윤광준
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.1-7
    • /
    • 1999
  • The change of the coefficients of thermal expansion(CTE) of Carbon/Epoxy was investigated for the temperature variation and a prediction model for the change of CTE was proposed. Elastic properties and CTEs in the principal material directions were measured in the range of room temperature to cure temperature and characterized as functions of temperature. By applying the characterized properties to the classical lamination theory, a computational method to predict the change of CTEs of a general laminate for temperature variation was proposed. the coefficients of thermal expansion of laminates with various stacking sequences were measured and compared with those predicted. Good agreements between the predicted results and the experimental data show that the c hanges of CTEs of a general laminate for temperature variation can be predicted well by using the proposed method.

  • PDF

Thermal Storage and Thermodynamic Characteristics of Phase Change Materials Slurries

  • Kwon, Ki-Hyun;Jeong, Jin-Woong;Kim, Jong-Hoon;Kim, Yong-Joo;Choi, Chang-Hyun
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1392-1397
    • /
    • 2009
  • This study was aimed at developing a low cost cold storage system for agricultural products. Three kinds of slurries: $K_1$, $K_2$, and $K_3$ slurries were developed using phase change materials (PCMs) such as tetradecane, octadecane, and sodium polyacrylate to maintain the desired temperature ranges. The slurries were manufactured by in-situ polymerization. Tetradecane and octadecane were capsulated in a core with melamine at the surface. The thermodynamic characteristics of the slurries were measured and analyzed. The latent heats of the $K_1$, $K_2$, and $K_3$ slurries at the melting points were 206.41, 186.88, and 147.91 kJ/kg, respectively. A transportable cold storage container was built to investigate the performance of the slurries as thermal storage media. The temperatures at the insides of the container could be maintained in the ranges of 0-5, 5-10, and $10-15^{\circ}C$ for more than 23, 27, and 60 hr with the $K_1$, $K_2$, and $K_3$ slurries, respectively.

A Study on the High-Temperature Characteristics of a Tunable All-Optical Filter Using Fiber Bragg Grating (FBG를 이용한 파장가변 형 전광 필터의 고온 특성에 관한 연구)

  • Son, Yong-Hwan;Yang, Se-Hoon;Kim, Hyun-Seung;Han, Sang-Kook
    • Journal of IKEEE
    • /
    • v.14 no.4
    • /
    • pp.263-269
    • /
    • 2010
  • In this paper, we present high temperature characteristics of a tunable all-optical filter using fiber Bragg grating(FBG) filter in Ge doped and Ge & B co-doped fiber, including peak reflectivity, bandwidth and various normalized refractive index change with temperature variation. The reflection spectrum of a FBG filter with refractive index change is affected by its thermal stability. Consequently Ge doped FBG tunable filter has a better thermal stability than Ge & B co-doped FBG tunable filter. Also, both FBG tunable filters show good thermal stability up to about $500^{\circ}C$.

Study of Thermal Storage Technology using Phase Change Material (잠열물질을 이용한 열저장 기술에 관한 연구)

  • Kim, Jeong-Yeol;Chung, Dong-Yeol;Park, Dongho;Peck, Jong-Hyeon
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • The cold chain system in South-East Asia is requiring to maintain freshness of refrigerated or frozen food. In this study, Thermal storage system using Phase change material (PCM) was developed and evaluated its performance about temperature and cold keeping time. For various application of cold chain system, we developed portable cold box, cold roll container and freezing station. Keeping time on laboratory tests of portable cold box in case of refrigeration and freezing were 6 hours and 4 hours, respectively. Cold container was developed to 2.5 ton scale. Evaluation in Indonesia, it was showed to keep the setting temperature of $-10^{\circ}C$ over 40 hours at $30^{\circ}C$ of ambient air. Freezing station using PCM was kept over 24 hours under $-20^{\circ}C$.

  • PDF

Effect of Welding Thermal Cycle on Microstructure and Pitting Corrosion Property of Multi-pass Weldment of Super-duplex Stainless Steel (슈퍼 듀플렉스 다층용접부의 미세조직 및 공식(Pitting Corrosion)에 미치는 용접열사이클의 영향)

  • Nam, Seong-Kil;Park, Se-Jin;Na, Hae-Seong;Kang, Chung-Yun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.37-37
    • /
    • 2009
  • Due to their high corrosion resistance and improved mechanical properties super-duplex stainless steel (SDSS) are extensively used in petrochemical plants such as facilities in modern oil platform and off-shore process equipment. It is well known that the best mechanical and corrosion resistance properties of super-duplex stainless steel are obtained with a microstructure having approximately equal amounts of austenite and ferrite. And it is also known that sigma($\sigma$), chi($\chi$), secondary austenite(${\gamma}2$), chromium carbides and nitride affected adversely their properties. Therefore these phases must be avoided. However, effects of succeeding weld thermal cycle on the change of microstructure of weldment at multi-pass weld were not seldom experimentally researched. Therefore in the present work, the change of weldmetal microstructure and the effect of microstructure on pitting corrosion property at $40^{\circ}C$ by succeeding each weld thermal cycle were researched. The thermal history of root side was measured experimentally and the change of microstructure of root weld according to thermal cycle of each weld layer was evaluated. And the relationship between microstructure of root weld and pitting corrosion property at $40^{\circ}C$ was also investigated. Results of the present work are show as below. 1. The ferrite contents of root weld are gradually reduced by succeeding weld thermal cycle. 2. The 2nd phases such as sigma($\sigma$), chi($\chi$), secondary austenite(${\gamma}2$), chromium carbides and nitride are increased gradually by succeeding weld thermal cycle. 3. The pitting corrosion was detected in root weld part and weight loss by pitting corrosion is increased in proportional to the time exposed over $600^{\circ}C$ of the root weld. 4. The succeeding weld thermal cycles affect the microstructure of the former weldments and promote the formation of 2nd phases. That is, the more succeeding welds are added, the more 2nd phases are gradually increased. Consequently, it is thougth that this adversely affects pitting corrosion property.

  • PDF

Study on Thermal Stability of Liquid Crystal Display for Projection TV Application (프로젝션 TV 적용을 위한 액정 디스플레이의 열적 안전성에 관한 연구)

  • Kang, Hee-Jin;Hwang, Jeoung-Yeon;Kang, Hyung-Ku;Bae, Yu-Han;Lee, Whee-Won;Kim, Young-Hwan;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.177-180
    • /
    • 2005
  • We have investigated electro-optical characteristics in three kinds of TN cells on the polyimide surface. Transmittance of no thermal stressed TN cells were better than that of thermal stressed TN cells. Also. the threshold voltage and the response time of thermal stressed TN cells were same that of no thermal stressed TN cells. There were little change of value in these TN cells. On the other hand. transmittances of TN cells on the polyimide surface decreased by increasing thermal stress time. Moreover. the residual DC of the thermal stressed TN cells on the polyimide surface showed the characteristics of thermal stressed TN cells were weakened as increasing thermal stress temperature and time. Therefore. thermal stability of TN cells were decreased gradually by giving high thermal stress for a long time.

  • PDF

An Experimental Study on the Thermal Performance Measurement of Standing Column Well type Borehole Heat Exchanger (스탠딩컬럼웰형(SCW) 지중열교환기의 열성능 측정에 관한 실험적 연구)

  • Lee, Sanghoon;Choe, Yongseok;An, Kunmuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.122.2-122.2
    • /
    • 2010
  • Knowledge of ground thermal properties is most important for the proper design of BHE(borehole heat exchanger) systems. The configure type, pipe size and thermal performance of the BHE is highly dependent on the ground source heatpump system-efficiency and instruction cost. Thermal response tests with mobile measurement devices were developed primarily for in-situ determination of design data for Standing Column Well apply. The main purpose has been to determine in-situ values of effective ground thermal conductivity and thermal resistance, including the effect of ground-water flow and natural convection in the boreholes. The test rig is set up on a some trailer, and contains a sub-circulation pump, a boiler, temperature sensors, flow meter and a data logger for recording the temperature and circulation fluid flow data. A constant heating power is injected into the SCW through the test rig and the resulting temperature change in the SCW is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective in-situ values of rock thermal conductivity and thermal resistance of SCW.

  • PDF

An Experimental Study on the Thermal Performance Measurement of Large Diameter Borehole Heat Exchanger(LD-BHE) for Tripe-U Pipes Spacer Apply (3중관용 스페이서를 적용한 대구경 지중열교환기의 성능측정에 관한 연구)

  • Lee, Sang-Hoon;Park, Jong-Woo;Lim, Kyoung-Bin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.581-586
    • /
    • 2009
  • Knowledge of ground thermal properties is most important for the proper design of large scale BHE(borehole heat exchanger) systems. The type, pipe size and thermal performance of the BHE is highly dependent on the ground source heatpump system-efficiency and instruction cost. Thermal response tests with mobile measurement devices were developed primarily for insitu determination of design data for large diameter BHE for triple-U spacer apply. The main purpose has been to determine insitu values of effective ground thermal conductivity and thermal resistance, including the effect of ground-water flow and natural convection in the boreholes. The test rig is set up on a some trailer, and contains a circulation pump, a inline heater, temperature sensors, flow meter, power analysis meter and a data logger for recording the temperature, fluid flow data. A constant heat power is injected into the borehole through the tripl-U pipes system of test rig and the resulting temperature change in the borehole is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective insitu values of rock thermal conductivity and borehole thermal resistance of large diameter BHE for spacer apply.

  • PDF

A Study on Thermal Behaviors of Expanded Graphite/Erythritol Composites (팽창흑연/에리스리톨 복합체의 열적거동에 관한 연구)

  • Choi, Bo-Kyung;Choi, Woong-Ki;Kuk, Yun-Su;Kim, Hong-Gun;Seo, Min-Kang
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.463-467
    • /
    • 2014
  • In this paper, the thermal behaviors of expanded graphite(EG)/erythritol composites with different contents of EG were studied. The surface and structure properties of the composites were determined by using scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD), respectively. The thermal properties were investigated by differential scanning calorimetry (DSC) and thermal conductivity (TC). As experimental results, the thermal conductivity of the composites increased with increasing the EG content. However, the latent heat was somewhat decreased in the presence of EG. We could concluded that EG was highly promising materials for improving the heat transfer enhancement and energy storage capacity of phase change materials (PCMs).