• Title/Summary/Keyword: thermal breakdown

Search Result 318, Processing Time 0.035 seconds

Thermal Bubble-Initiated Breakdown Mechanism of $LN_2$ (액체질소에서의 열적 기포에 의한 절연파괴기구)

  • Kwak, Dong-Joo;Choo, Young-Bae;Ryu, Kang-Sik;Ryu, Wdd-Kyung;Yun, Mun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.302-305
    • /
    • 1989
  • Ac, dc and impulse dielectric strengths of $LN_2$ at 0.1MPa were investigated experimentally, referring to the behavior of thermally induced bubble, which might be generated at quenching condition of immerged-cooling superconducting devices. The experimental results show that the bubble shape under electric field stress depends significantly on the applied voltage waveform. With ac voltage, the breakdown voltage of $LN_2$ falls suddenly near to one of the saturated gas at the threshold heater power of boiling onset. In control to this, the reduction of impulse breakdown voltage with heater peter is gradual and the time to breakdown depends on the existence of thermal bubble. These breakdown characteristics can be explained satisfactorily by the bubble behavior under electric fields.

  • PDF

Electrical Insulation Properties of Nanocomposites with SiO2 and MgO Filler

  • Jeong, In-Bum;Kim, Joung-Sik;Lee, Jong-Yong;Hong, Jin-Woong;Shin, Jong-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.6
    • /
    • pp.261-265
    • /
    • 2010
  • In this paper, we attempt to improve the electrical characteristics of epoxy resin at high temperature (above $80^{\circ}C$) by adding magnesium oxide (MgO), which has high thermal conductivity. Scanning electron microscopy (SEM) of the dispersion of specimens with added MgO reveals that they are evenly dispersed without concentration. The dielectric breakdown characteristics of $SiO_2$ and MgO nanocomposites are tested by measurements at different temperatures to investigate the filler's effect on the dielectric breakdown characteristics. The dielectric breakdown strength of specimens with added $SiO_2$ decreases slowly below $80^{\circ}C$ (low temperature) but decreases rapidly above $80^{\circ}C$ (high temperature). However, the gradient of the dielectric breakdown strength of specimens with added MgO is slow at both low and high temperatures. The dielectric breakdown strength of specimens with 0.4 wt% $SiO_2$ is the best among the specimens with added $SiO_2$, and that of specimens with 3.0 wt% and 5.0 wt% MgO is the best among those with added MgO. Moreover, the dielectric strength of specimens with 3.0 wt% MgO at high temperatures is approximately 53.3% higher than that of specimens with added $SiO_2$ at $100^{\circ}C$, and that of specimens with 5.0 wt% of MgO is approximately 59.34% higher under the same conditions. The dielectric strength of MgO is believed to be superior to that of $SiO_2$ owing to enhanced thermal radiation because the thermal conductivity rate of MgO (approximately 42 $W/m{\cdot}K$) is approximately 32 times higher than that of $SiO_2$ (approximately 1.3 $W/m{\cdot}K$). We also confirmed that the allowable breakdown strength of specimens with added MgO at $100^{\circ}C$ is within the error range when the breakdown probability of all specimens is 40%. A breakdown probability of up to 40% represents a stable dielectric strength in machinery and apparatus design.

A Study on the Degradation of Insulators using Thermal Image Camera (열상카메라를 이용한 애자의 열화에 관한 연구)

  • Kim, Jeong-Tae;Kim, Ji-Hong;Koo, Ja-Yoon;Yoon, Ji-Ho;Ham, Gil-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1933-1935
    • /
    • 2000
  • In this paper, it was tried to find out the minimum measurement range in the diagnosis of insulators using thermal image camera, for the purpose, leakage currents and thermal images were observed simultaneously for the insulators of which surface had been artificially polluted by salt fog. As a result. the surface temperature was increased with leakage currents. Also, the results of AC breakdown tests for the insulator of which temperature rise was more than 1 $^{\circ}C$ showed to be bad. Therefore, through the study on the relationship between leakage current, temperature rise and AC breakdown voltages, the diagnosis of the insulator in site would be possible using the thermal image camera.

  • PDF

Estimation of Insulation Life of PAI/Nano Silica Hybrid Coil by Accelerated Thermal Stress (가속된 열적 스트레스에 의한 PAI / Nano Silica 하이브리드 코일의 절연수명 추정)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.52-60
    • /
    • 2019
  • In this paper, four types of insulation coils were fabricated by adding various kinds of glycols to improve the flexibility and adhesion of insulating coils in varnish dispersed with PAI / Nano Silica_15wt%. The applied voltage and frequency were 1.5 kV / 20 kHz for accelerated life evaluation. Through the 6th temperature stress level, the cause of the insulation breakdown of the coil was ignored and only the breakdown time was measured. The Arrhenius model was chosen based on the theoretical relationship between chemical reaction rate and temperature for estimating the insulation life of the coil due to accelerated thermal stress. Three types of distributions (Weibull, Lognormal, Exponential) were selected as the relationship between thermal stress model and distribution. The average insulation lifetime was estimated under the temperature stress of four types of insulation coils through the relationship between one kind of model and three kinds of distributions.

Characterizations of Thermal Compound Using CuO Particles Grown by Wet Oxidation Method (습식 산화법으로 성장된 산화구리입자를 이용한 방열 컴파운드 제조 및 특성 연구)

  • Lee, Dong Woo;Um, Chang Hyun;Chu, Jae Uk
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.221-228
    • /
    • 2017
  • Various morphologies of copper oxide (CuO) have been considered to be of both fundamental and practical importance in the field of electronic materials. In this study, using Cu ($0.1{\mu}m$ and $7{\mu}m$) particles, flake-type CuO particles were grown via a wet oxidation method for 5min and 60min at $75^{\circ}C$. Using the prepared CuO, AlN, and silicone base as reagents, thermal interface material (TIM) compounds were synthesized using a high speed paste mixer. The properties of the thermal compounds prepared using the CuO particles were observed by thermal conductivity and breakdown voltage measurement. Most importantly, the volume of thermal compounds created using CuO particles grown from $0.1{\mu}m$ Cu particles increased by 192.5 % and 125 % depending on the growth time. The composition of CuO was confirmed by X-ray diffraction (XRD) analysis; cross sections of the grown CuO particles were observed using focused ion beam (FIB), field emission scanning electron microscopy (FE-SEM), and energy dispersive analysis by X-ray (EDAX). In addition, the thermal compound dispersion of the Cu and Al elements were observed by X-ray elemental mapping.

A Study on the Effect of Space Charge and tole Dielectric Breakdown of PEF for Electric Installation (전기설비용 PET의 절연파괴와 공간전하효과에 관한 연구)

  • 윤성도;박상현;정학수;서장수;박중순;국상훈
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.37-40
    • /
    • 1992
  • This paper examined the existance behavior of charged particles by measuring polarity inversion current Thermal Stimulate Current (TSC) and analysed appearance mechanism of polarity inversion current Peak and Also investigated relation between ionic space charge format ion and dielectric breakdown by measuring D.C breakdown impulse breakdown D.C - impulse superposition as a sample of FET. As a result. lie found that dielectric breakdown is likely to happen due to ionic space charge at the transient state when applied polarity inversion voltage and that charged partion of TSE Peak at the high temperature was the same as that of polarity inversion current. Also there was no effect on ionic space charge about the dielectric breakdown in stationary state when applied D.C voltage.

  • PDF

A Study on Mechanical, Electrical Properties of Epoxy/MICA Composites with MICA Filled Contents (Epoxy/MICA 복합체의 MICA 충진함량 변화에 대한 기계적, 전기적 특성연구)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.219-227
    • /
    • 2013
  • This paper reported a study on the thermal, mechanical and electrical insulation properties of epoxy/mica composites. To investigate the effect of mica content, glass transition temperature, mechanical properties such as tensile and flexural strength, and insulation breakdown properties for epoxy composites with various contents of mica. The effect of insulation thickness on insulation breakdown property was also studied. It was observed that tensile and flexural strength decreased with increasing mica content, while elastic modulus increased as the mica content increased. AC insulation breakdown strength for all epoxy/mica composites was higher than that of neat epoxy and that of the system with 20 wt% mica was 14.4% improved. As was expected, insulation breakdown strength at $30^{\circ}C$ was far higher than that at $130^{\circ}C$, and it was also found that insulation breakdown strength was inversely proportion to insulation thickness.

ELECTRICAL BREAKDOWN INITIATION OF ANODIC FILMS DURING ANODIZING IN MOLTEN BISULPHATE MELT

  • Han, S.H.;Thompson, G.E.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.341-343
    • /
    • 1999
  • The morphology and composition of anodic films, formed on aluminium at various current densities, in the range $1-100{\;}Am^{-2}$, in the molten bisulphate melt at different temperatures (418-498K), have been studied using transmission electron microscopy of ultramicrotomed film sections, and ion beam thinned films. The first sign of incipient breakdown revealed by transmission electron microscopy of stripped films, is always the appearance of dark regions about 1,000 nm in diameter, representing local overgrowth of the film. The breakdown mechanism is closely related to thermal effects, because temperature rises at regions representing local overgrowth in the stripped films were observed at voltages close to the breakdown voltage, likely arising through impact ionization.

  • PDF

Comparative Study of DC Breakdown and Space Charge Characteristics of Insulation Paper Impregnated with Natural Ester and Mineral Oil

  • Hao, Jian;Zou, Run-Hao;Liao, Rui-Jin;Yang, Li-Jun;Liao, Qiang;Zhu, Meng-Zhao
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1682-1691
    • /
    • 2018
  • Natural ester is a suitable substitute for mineral oil and has been widely used in AC transformer in many countries. In order to further application of natural ester in direct current (DC) equipment, it is needed to investigate its long term insulation property under DC condition. In this paper, a thermal ageing experiment was conducted for both mineral oil-paper and natural ester-paper insulation. The DC breakdown and space charge characteristics of insulation paper impregnated with natural ester and mineral oil was compared. Results show that the resistivity of the paper immersed in natural ester and mineral oil both increase as the ageing goes on. While insulation paper impregnated with natural ester has higher resistivity and DC breakdown voltage than the paper impregnated with mineral oil. The DC breakdown voltage for the oil impregnated insulation paper being DC pre-stressing is higher than that without pre-stressing. The average DC breakdown field strength difference between the test with pre-stressing and without pre-stressing clearly shows that there is an apparent enhancement effect for the homo-charge injection on the DC breakdown.

The Crack Resistance and the Dielectric Breakdown properties of Epoxy Composities due to the Multi Stresses Variation (다중 응력 변화에 따른 에폭시 복합체의 내크랙성 및 절연 파괴 특성)

  • 송봉철;김상걸;안준호;김충혁;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.136-139
    • /
    • 2000
  • Epoxy materials are used as insulation material for electric power cables. In the case of a flow of excess current due to the temperature difference which occurs between the heat of the conductor and the atmosphere, heat degrades connection point of the cables. Also, the mechanical stress, which occurs due to the thermal expansion coefficient of cable connection electrode system and epoxy insulation materials along with the gap between thermal conduction based on the extra high voltage of transmitted voltage, increases possibility of cracks to occur. The relationship between mechanical stress and electrical breakdown mechanism is verified for the epoxy materials such as high toughness epoxy materials, which comes to be used contemporarily, and for the breakdown mechanism of epoxy materials on the multi-stresses (mechanical and electrical) due to the variation of the temperature.

  • PDF