• Title/Summary/Keyword: thermal birefringence

검색결과 42건 처리시간 0.028초

급속 가열에 의한 사출성형품의 복굴절특성 개선 (Improvement of Birefringence Characteristics of Injection-Molded Plastic Parts by Rapid Heating)

  • 박근;김병훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.195-198
    • /
    • 2007
  • The present work focuses on the prediction of birefringence in injection-molded plastic part and its improvement by rapid mold heating. To calculate birefringence, flow-induced residual stress is computed through a fully three-dimensional injection molding analysis. Then the stress-optical law is applied from which the order of birefringence can be evaluated and visualized. The birefringence patterns are predicted for a rectangular plate with a variation of mold temperatures, which shows that the amount of molecular orientation and birefringence level decreases with an increase of mold temperature. The effect of mold temperature on the order of birefringence is also studied for a thin-walled rectangular strip, and compared with experimental measurements. Both predicted and experimental patterns of birefringence are in agreements on the observation that the birefringence level diminishes significantly when the mold temperature is raised to above the glass transition temperature.

  • PDF

두개의 렌즈형 레이저 막대들로 구성된 대칭형 공진기의 안정도 및 빔질의 수치적 분석 (Numerical analysis of resonator stability and beam quality in a thermal-birefringence compensated symmetric resonator consisting of two laser rods with rod-end curvatures)

  • 김현수
    • 한국광학회지
    • /
    • 제15권6호
    • /
    • pp.575-582
    • /
    • 2004
  • 두개의 렌즈형 레이저 막대들로 구성된 대칭형 레이저 공진기의 안정도와 빔질 특성을 분석하고 열 복굴절 보상 특성을 수치적으로 분석하였다. 공진기는 열 효과에 의한 이중초점을 제거하기 위한 90$^{\circ}$ 회전자가 두개의 렌즈형 레이저 막대 사이에 삽입된 구조로 되어있다. 수치 분석을 통해 레이저 막대를 오목렌즈로 만들 경우 고출력 영역에서 안정도가 증가하고 빔질이 향상됨을 보였다. 또한 두개의 레이저 막대를 서로 맞댄 공진기 구조에서 열 복굴절이 잘 보상될 수 있음을 보였다.

유리 압축 실험에서의 복굴절 분포 예측 (Prediction of Birefringence Distribution in Cylindrical Glass Compression Test)

  • 이주현;나진욱;임성한;오수익
    • 소성∙가공
    • /
    • 제13권6호
    • /
    • pp.509-514
    • /
    • 2004
  • An analysis using FEM simulation was conducted to predict residual stresses and birefringence in simple compressed cylindrical glass as a preliminary part of the optimum design determination of optical lenses. The FEM simulation with the Maxwell viscoelastic constitutive model was used to predict thermal induced residual stresses and birefringence during the compression test considering stress relaxation. Also the linear photoelastic theory was introduced to calculate birefringence from the residual stress state. The error of simulation results between experimental results in the birefringence value at the center of glass specimen is $4.2\%$, and the error in the maximum radius of deformed glass specimen is $1.2\%$. The simulation results were in good agreement with deformation and birefringence distribution in the existing experimental result.

사출/압축 성형 Center-gated 터스크에서의 잔류 응력과 복굴절의 수치 해석 (II) - 공정조건의 영향 - (Numerical Analysis of Residual Stresses and Birefringence in Injection/Compression Molded Center-gated Disks (II) - Effects of Processing Conditions -)

  • 이영복;권태헌;윤경환
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2355-2363
    • /
    • 2002
  • The accompanying paper, Part 1, has presented the physical modeling and basic numerical analysis results of both the flow-induced and thermally-induced residual stress and birefringence in injection molded center gated disks. The present paper, Part II, has attempted to investigate the effects of various processing conditions of injection/compression molding process on the residual stress and birefringence. The birefringence is significantly affected by injection melt temperature, packing pressure and packing time. Birefringence in the shell layer increases as melt temperature gets lower. The inner peak of birefringence increases with packing time and packing pressure. On the other hand, packing pressure, packing time and mold wall temperature affect the thermally-induced residual stress rather significantly in the shell layer, but insignificantly in the core region. Injection/compression molding has been found to reduce the birefringence in comparison with the conventional injection molding process. In particular, mold closing velocity and initial opening thickness in the compression stage of injection/compression molding process have significant effect on the flow-induced birefringence, but not on tile thermal residual stress and the thermally induced birefringence.

유리 압축 실험에서의 복굴절 분포 예측 (Prediction of birefringence distribution in cylindrical glass compression test)

  • 이주현;나진욱;임성한;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.95-100
    • /
    • 2004
  • An analysis using FEM simulation was conducted to predict residual stresses and birefringence in simple compressed cylindrical glass as a preliminary part of the optimum design determination of optical lenses. The FEM simulation with the Maxwell viscoelastic constitutive model was used to predict thermal induced residual stresses and birefringence during the compression test considering stress relaxation. Also the linear photoelastic theory was introduced to calculate birefringence from the residual stress state. The simulation results were in good agreement with deformation and birefringence distribution in the existing experimental result.

  • PDF

사출/압축 성형 Center-Gated 디스크에서의 잔류 응력과 복굴절의 수치 해석 (I) - 모델링 및 기본 결과 - (Numerical Analysis of ]Residual Stresses and Birefringence in Injection/Compression Molded Center-gated Disks (I) - Modeling and Basic Results -)

  • 이영복;권태헌;윤경환
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2342-2354
    • /
    • 2002
  • The present study has numerically predicted both the flow -induced and thermally-induced residual stresses and birefringence in injection o. injection/compression molded center -gated disks. Analysis system for entire molding process was developed based on an ap propriate physical modeling including a nonlinear viscoelastic fluid model, stress-optical law, a linear viscoelastic solid model, free volume theory for density relaxation phenomena and a photoviscoelasticity and so on. Part I presents physical modeling a nd typical numerical analysis results of residual stresses and birefringence in the injection molded center-gated disk. Thermal residual stress was found to be extensional near the center, compressive near the surface and tend to become toward tensional at the surface. A double-hump profile was obtained across the thickness in birefringence distribution: nonzero birefringence is found to be thermally induced, the outer peak is due to the shear flow and subsequent stress relaxation during the filling stage a nd the inner peak is due to the additional shear flow and stress relaxation during the packing stage. Predicted birefringence including both the flow -induced and thermally-induced one becomes quite similar to the experimental one.

An in Depth Study of Crystallinity, Crystallite Size and Orientation Measurements of a Selection of Poly(Ethylene Terephthalate) Fibers

  • Karacan Ismail
    • Fibers and Polymers
    • /
    • 제6권3호
    • /
    • pp.186-199
    • /
    • 2005
  • A selection of commercially available poly(ethy1ene terephtha1ate) fibers with different degrees of molecular alignment and crystallinity have been investigated utilizing a wide range of techniques including optical microscopy, infrared spectroscopy together with thermal and wide-angle X-ray diffraction techniques. Annealing experiments showed increased molecular alignment and crystallinity as shown by the increased values of birefringence and melting enthalpies. Crystallinity values determined from thermal analysis, density, unpolarized infrared spectroscopy and X-ray diffraction are compared and discussed in terms of the inherent capabilities and limitations of each measurement technique. The birefringence and refractive index values obtained from optical microscopy are found to decrease with increasing wavelength of light used in the experiments. The wide-angle X-ray diffraction analysis shows that the samples with relatively low orientation possess oriented non-crystalline array of chains whereas those with high molecular orientation possess well defined and oriented crystalline array of chains along the fiber axis direction. X-ray analysis showed increasing crystallite size trend with increasing molecular orientation. SEM images showed micro-cracks on low oriented fiber surfaces becoming smooth on highly oriented fiber surfaces. Excellent bending characteristics were observed with knotted fibers implying relatively easy fabric formation.

Nd:YAG 레이저 봉의 열렌즈 효과를 고려한 열복굴절에 의한 레이저 빔 편광 왜곡의 수치 계산 (Numerical analysis for depolarization loss of laser beam induced by thermal birefringence considering thermal lensing at Nd:YAG rod)

  • 박종락;신윤섭;윤태현
    • 한국광학회지
    • /
    • 제10권3호
    • /
    • pp.237-242
    • /
    • 1999
  • 레이저 봉의 열렌즈 효과를 고려하여 열복굴절에 의해 발생된 레이저 빔의 편광 왜곡을 계산할 수 있는 모델이 제안되었고 수치 계산이 수행되었다. 계산에 사용된 모델은 근축광선 이론을 바탕으로 광학적 경로를 고려하고 있다. 계산 결과를 존스 행렬을 사용한 것과 비교하였고, 수치 모델의 타당성을 검증하기 위해 최근 수행된 실험에 적용하여 계산 결과가 실험결과와 일치하는 경향을 보임을 확인하였다.

  • PDF

무긴장 열처리 나일론 6 필라멘트사의 내부구조 변화 - 미연신사, 부분배향사 및 완전연신사의 비교 - (The Microstructural Changes of Free-Annealed Nylon 6 Filament Yarns - Comparison of UDY, POY, and FDY -)

  • 이정주;조길수
    • 한국의류학회지
    • /
    • 제13권1호
    • /
    • pp.43-47
    • /
    • 1989
  • The microstructural changes of nylon 6 UDY, POY and FDY were compared after free-annealing through crystallinity, birefringence, and melting behavior analyses. Free-annealing was done at various temperatures $(120^{\circ}C\;,140^{\circ}C,\;160^{\circ}C,\;180^{\circ}C,\;200^{\circ}C)$ and times (15 min., 30 min., 60 min.) using vaccum oven. Crystallinity was measured by the density gradient column technique and birefringence was measured using a Nikon polarizing microscope with a quartz wedge and Senarmont compensator. Melting behavior was investigated on the basis of DSC melting corves. Crystallinites of specimens increased as the treatment temperature and time increased. Birefringence of UDY increased after annealing and increased as the treatment temperature increased. On the other hand, those of POY and FDY decreased after annealing. Especially, the changes of crystallinity and birefringence of treated POY were particularly lower than those of treated UDY and FDY. Melting peaks of untreated UDY, POY and FDY were different in the position and the shape, but little change was seen in melting peaks in spite of increasing the annealing temperature and time. UDY and FDY showed single melting peaks in all the specimens. But POY showed double melting peaks, which means the coexistences of crystals with different thermal properties.

  • PDF

Structure and Properties of Syndiotactic Polystyrene Fibers Prepared in High-speed Melt Spinning Process

  • Hada Yoshiaki;Shikuma Haruo;Ito Hiroshi;Kikutani Takeshi
    • Fibers and Polymers
    • /
    • 제6권1호
    • /
    • pp.19-27
    • /
    • 2005
  • High-speed melt spinning of syndiotactic polystyrene was carried out using high and low molecular weight poly­mers, HM s-PS and LM s-PS, at the throughput rates of 3 and 6 g/min. The effect of take-up velocity on the structure and properties of as-spun fibers was investigated. Wide angle X-ray diffraction (WAXD) patterns of the as-spun fibers revealed that the orientation-induced crystallization started to occur at the take-up velocities of 2-3 km/min. The crystal modification was a-form. Birefringence of as-spun fibers showed negative value, and the absolute value of birefringence increased with an increase in the take-up velocity. The cold crystallization temperature analyzed through the differential scanning calorimetry (OSC) decreased with an increase in the take-up velocity in the low speed region, whereas as the melting temperature increased after the on-set of orientation-induced crystallization. It was found that the fiber structure development proceeded from lower take-up velocities when the spinning conditions of higher molecular weight and lower throughput rate were adopted. The highest tensile modulus of 6.5 GPa was obtained for the fibers prepared at the spinning conditions of LM s-PS, 6 g/min and 5 km/min, whereas the highest tensile strength of 160 MPa was obtained for the HM s-PS fibers at the take-up velocity of 2 km/min. Elongation at break of as-spun fibers showed an abrupt increase, which was regarded as the brittle-duc­tile transition, in the low speed region, and subsequently decreased with an increase in the take-up velocity. There was a uni­versal relation between the thermal and mechanical properties of as-spun fibers and the birefringence of as-spun fibers when the fibers were still amorphous. The orientation-induced crystallization was found to start when the birefringence reached -0.02. After the starting of the orientation-induced crystallization, thermal and mechanical properties of as-spun fibers with similar level of birefringence varied significantly depending on the processing conditions.