• Title/Summary/Keyword: thermal bending

Search Result 472, Processing Time 0.023 seconds

Relations between Input Parameters and Residual Deformation in Line Heating process using Finite Element Analysis and Multi-Variate Analysis (유한요소해석과 다변수해석에 의한 선상가열 변형관계식)

  • Jang-Hyun Lee;Jong-Gye Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.2
    • /
    • pp.69-80
    • /
    • 2002
  • Sequential process of roll-bending and line heating has been used to deform the curved hull-plates in shipyards. A growing interest for the mechanization or automation of the line heating process has been noted. Relations between heating conditions and residual deformations are important components needed for the mechanization. The residual deformations are investigated by using a thermal elastic-plastic analysis based on the finite element analysis(FEA). Several experiments are also performed to examine the validity of the results of FEA. The input parameters of line heating are suggested by dimensional analysis of line heating. The dimensional analysis can extract the primary input-parameters of line heating. The relations between the heating conditions and the residual deformations are set up by multi-variate analysis and multiple-regression method. This study suggests a method for the relation between the heating conditions and the deformations lying under the line heating.

Deformation Behavior of MEMS Gyroscope Package Subjected to Temperature Change (온도변화에 따른 MEMS 자이로스코프 패키지의 미소변형 측정)

  • Joo Jin-Won;Choi Yong-seo;Choa Sung-Hoon;Kim Jong-Seok;Jeong Byung-Gil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.13-22
    • /
    • 2004
  • In MEMS devices, packaging induced stress or stress induced structure deformation become increasing concerns since it directly affects the performance of the device. In this paper, deformation behavior of MEMS gyroscope package subjected to temperature change is investigated using high-sensitivity moire interferometry. Using the real-time moire setup, fringe patterns are recorded and analyzed at several temperatures. Temperature dependent analyses of warpages and extensions/contractions of the package are presented. Linear elastic behavior is documented in the temperature region of room temperature to $125^{\circ}C$. Analysis of the package reveals that global bending occurs due to the mismatch of thermal expansion coefficient between the chip, the molding compound and the PCB. Detailed global and local deformations of the package by temperature change are investigated, concerning the variation of natural frequency of MEMS gyro chip.

  • PDF

A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation

  • Tounsi, Abdelouahed;Al-Dulaijan, S.U.;Al-Osta, Mohammed A.;Chikh, Abdelbaki;Al-Zahrani, M.M.;Sharif, Alfarabi;Tounsi, Abdeldjebbar
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.511-524
    • /
    • 2020
  • In this research, a simple four-variable trigonometric integral shear deformation model is proposed for the static behavior of advanced functionally graded (AFG) ceramic-metal plates supported by a two-parameter elastic foundation and subjected to a nonlinear hygro-thermo-mechanical load. The elastic properties, including both the thermal expansion and moisture coefficients of the plate, are also supposed to be varied within thickness direction by following a power law distribution in terms of volume fractions of the components of the material. The interest of the current theory is seen in its kinematics that use only four independent unknowns, while first-order plate theory and other higher-order plate theories require at least five unknowns. The "in-plane displacement field" of the proposed theory utilizes cosine functions in terms of thickness coordinates to calculate out-of-plane shear deformations. The vertical displacement includes flexural and shear components. The elastic foundation is introduced in mathematical modeling as a two-parameter Winkler-Pasternak foundation. The virtual displacement principle is applied to obtain the basic equations and a Navier solution technique is used to determine an analytical solution. The numerical results predicted by the proposed formulation are compared with results already published in the literature to demonstrate the accuracy and efficiency of the proposed theory. The influences of "moisture concentration", temperature, stiffness of foundation, shear deformation, geometric ratios and volume fraction variation on the mechanical behavior of AFG plates are examined and discussed in detail.

로켓 모션테이블 실시간 모의시험

  • Sun, Byung-Chan;Park, Yong-Kyu;Choi, Hyung-Don;Cho, Gwang-Rae
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.170-178
    • /
    • 2004
  • This paper deals with six degree-of-freedom HILS(hardware-in-the-loop-simulation) of KSR-III rocket using a TAFMS(three axis flight motion simulator). This TAFMS HILS test is accomplished before main HILS tests in order to verify the control stability in the presence of TAFMS dynamic effects. The TAFMS HILS test includes initial attitude holding tests for INS initial alignment procedures, timer synchronization tests with an auxiliary lift-off signal, real-time calibration tests using an external thermal recorder, open-loop TAFMS operating tests, and final closed-loop TAFMS HILS tests using the TAFMS attitude measurements as inputs to the closed control loop. The HILS tests are accomplished for several flight conditions composed with nominal flight condition, TWD effect added condition, slosh modes and/or bending modes existing condition, and windy condition, etc.

  • PDF

Safety Evaluation of a Shipping Capsule for Special Form Radioisotope (특수형 방사성 동위원소 운반캡슐의 안전성 평가)

  • Lee, Ju-Chan;Seo, Ki-Seog;Ku, Jeong-Hoe;Bang, Kyoung-Sik;Han, Hyon-Soo;Park, Seong-Won
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.1
    • /
    • pp.35-43
    • /
    • 2001
  • All of sealing capsules to transport a special form radioactive material should be designed and fabricated in accordance with the design criteria prescribed in IAEA standards and domestic regulations. The objective of this study is to demonstrate the safety of a shipping capsule for $^{192}Ir$ special form radioisotope which produced in the HANARO. The safety tests were carried out for the impact, percussion, bending and heat test conditions. And leakage tests were carried out before and after the each test. Also, the safety analyses wert performed using computer codes in order to verify the test results. The capsule showed slight scratches and deformation, and maintained its structural and thermal integrities in all tests without any severe damage or melting. It also met the allowable limits of leakage rate after each test. Therefore, it has been verified that the capsule was designed and fabricated to meet all requirements for the special form.

  • PDF

Crystallization of Borosilicate Glass with the Addition of $ZrO_2$ (지르코니아 첨가된 보로실리케이트 유리의 결정화)

  • Shim, Gyu-In;Kim, Young-Hwan;Lim, Jae-Min;Choi, Se-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1127-1132
    • /
    • 2010
  • Borosilicate glass was prepared in the composition of 81% $SiO_2$, 4% $Na_2O$, 2% $Al_2O_3$, 13% $B_2O_3$. The albite phase($NaAlSi_3O_8$) increased with the $ZrO_2$(0~10wt.%) addition. For measurement of glass transition temperature($T_g$), crystallization temperature($T_{c,max}$) measured by differential thermal analysis. The $T_g$ and $T_{c,max}$ were $510{\sim}530^{\circ}C$ $650{\sim}670^{\circ}C$, respectively. The crystallized glass was heated at various conditions(temperature, time). After nucleation at $550^{\circ}C$ for 2hours prior to crystal growth at $650^{\circ}C$ for 4hours, the resulting Vickers hardness, fracture toughness and bending strength were about $736H_v$, $1.0779MPa{\cdot}m^{1/2}$, and 493MPa, which were 17%, 45% and 149% higher than parent borosilicate glass, respectively. Crystal size and transmittance of crystallized borosilicate glass were analyzed by FE-SEM, EDX and UV-VIS-NIR spectrophotometer. Transmittance of crystallized borosilicate glass was decreased with increasing $ZrO_2$(wt%) at visible-range. The results prove that light-weight bulletproof can be fabricated by the crystallization of borosilicate glass.

Mechanical properties by resin injection method of orthdontic acrylic resin (교정용 레진장치의 레진주입방법에 따른 기계적 특성)

  • Jo, Jeong-Ki
    • Journal of Digital Convergence
    • /
    • v.18 no.4
    • /
    • pp.341-346
    • /
    • 2020
  • Polymethyl methacrylate (PMMA), a self-curing resin mainly used in removable orthodontic appliances, is an acrylic resin mainly used in the field of modern dentistry. As an advantage, it has been used for a long time as a material for orthodontic devices in dentistry due to its color and volume, tissue affinity, and stability. The production of PMMA can be divided into self-polymerization method and thermal polymerization method according to activation method. Self-curing resins have long been used as orthodontic devices. The resin injection method is largely divided into a sprinkle-on method and a mixing method. In this study, we intend to test the mechanical properties according to the resin injection method of the orthodontic device, such as strength, modulus of elasticity, and surface roughness. There was no significant difference in strength as a result of three-point bending strength test on rectangular specimens (1.4 × 3.0 × 19.0 mm) of orthodontic PMMA. There was also no significant difference in hardness. There was no significant difference in surface roughness. It was confirmed that the orthodontic PMMA had no significant difference in mechanical properties according to the resin injection method of the orthodontic device.

The Classification of Manufacturing Work Processes to Develop Functional Work Clothes - With a Reference to the Automobile, Machine and Shipbuilding Industries -

  • Park, Ginah;Park, Hyewon;Bae, Hyunsook
    • Journal of Fashion Business
    • /
    • v.16 no.6
    • /
    • pp.21-35
    • /
    • 2012
  • In consideration of the injuries and deaths occurring at manufacturing sites due to the use of inappropriate work clothes or safety devices, this study aims to categorize manufacturing work processes to develop functional work clothes for heavy industries including the automobile, machine and shipbuilding industries in South Korea. Defining the features of the work environments and work postures of these industries provided for a categorization of the work processes which would enable the development of suitable work clothes for each work process' category. The results of the study based on a questionnaire survey are as follows: Work process category 1, including steel panel pressing and auto body assembly, final inspection (in automobile) and inspection (in machine), requires work clothes with upper body and arm mobility and performance to protect from the toxic fume factor. Work process category 2, consisting of welding (in automobile), cutting-and-forming (in machine) and attachment-and-construction (in shipbuilding), requires clothing elasticity, durability and heat and fire resistance. Work process category 3 comprising welding and grinding in the machine and shipbuilding industries, requires work clothes' tear resistance and elasticity, particularly for lateral bending mobility, and work clothes' sleeves' and pants' hemlines with sealed designs to defend against iron filing penetration, as well as incombustible and heat-resistant material performance. Finally, work process category 4, including painting in machine and shipbuilding, requires work clothes with waterproofing, air permeability, thermal performance, elasticity, durability and abrasion resistance.

Fabrication and Characterization of Alumina/Silver Nanocomposites

  • Cheon, Seung-Ho;Han, In-Sub;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.343-348
    • /
    • 2007
  • Alumina/silver nanocomposites were fabricated using a soaking method through a sol-gel route to construct an intra-type nanostructure. The pulse electric-current sintering (PECS) technique was used to sinter the nanocomposites. Several specimens were annealed after sintering. The microstructure, mechanical properties, critical frontal process zone (FPZ) size, and thermo-mechanical properties of the nanocomposites were estimated. The relative densities of the specimens sintered at 1350 and $1450^{\circ}C$ were 95% and 99%, respectively. The maximum value of the three-point bending strength was found to be 780 MPa for the $2{\times}2{\times}10 mm$ specimen sintered at $1350^{\circ}C$. The fracture toughness of the specimen sintered at $1350^{\circ}C$ was measured to be $3.60 MPa{\cdot}m^{1/2}$ using the single-edge V-notched beam (SEVNB) technique. The fracture mode of the nanocomposites was transgranular, in contrast to the intergranular mode of monolithic alumina. The fracture morphology suggested that dislocations were generated around the silver nanoparticles dispersed within the alumina matrix. The specimens sintered at $1350^{\circ}C$ were annealed at $800^{\circ}C$ for 5 min, following which the maximum fracture strength became 810 MPa and the fracture toughness improved to $4.21 MPam^{1/2}$. The critical FPZ size was the largest for the specimen annealed at $800^{\circ}C$ for 5 min. Thermal conductivity of the alumina/silver nanocomposites sintered at $1350^{\circ}C$ was 38 W/mK at room temperature, which was higher than the value obtained with the law of mixture.

Thermo-mechanical Behavior of Wire Bonding PBGA Packages with Different Solder Ball Grid Patterns (Wire Bonding PBGA 패키지의 솔더볼 그리드 패턴에 따른 열-기계적 거동)

  • Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.2
    • /
    • pp.11-19
    • /
    • 2009
  • Thermo-mechanical behaviors of wire-bond plastic ball grid array (WB-PBGA) package assemblies are characterized by high-sensitivity moire interferometry. Using the real-time moire setup, fringe patterns are recorded and analyzed for several temperatures. Experiments are conducted for three types of WB-PBGA package that have full grid pattern and perimeter pattern with/without central connections. Bending deformations of the assemblies and average strains of the solder balls are investigated, with an emphasis on the effect of solder interconnection grid patterns, Thermal strain distributions and the location of the critical solder ball in package assemblies are quite different with the form of solder ball grid pattern. For the WB-PBGA-PC, The largest of effective strain occurred in the inner solder ball of perimeter closest to the chip solder balls. The critical solder ball is located at the edge of the chip for the WB-PBGA-FG, at the most outer solder ball of central connections for the WB-PBGA-P/C, and at the inner solder ball closest to the chip for the WB-PBGA-P.

  • PDF