Browse > Article
http://dx.doi.org/10.14400/JDC.2020.18.4.341

Mechanical properties by resin injection method of orthdontic acrylic resin  

Jo, Jeong-Ki (Department of Dental Laboratory Technology, Chungbuk Health & Science University)
Publication Information
Journal of Digital Convergence / v.18, no.4, 2020 , pp. 341-346 More about this Journal
Abstract
Polymethyl methacrylate (PMMA), a self-curing resin mainly used in removable orthodontic appliances, is an acrylic resin mainly used in the field of modern dentistry. As an advantage, it has been used for a long time as a material for orthodontic devices in dentistry due to its color and volume, tissue affinity, and stability. The production of PMMA can be divided into self-polymerization method and thermal polymerization method according to activation method. Self-curing resins have long been used as orthodontic devices. The resin injection method is largely divided into a sprinkle-on method and a mixing method. In this study, we intend to test the mechanical properties according to the resin injection method of the orthodontic device, such as strength, modulus of elasticity, and surface roughness. There was no significant difference in strength as a result of three-point bending strength test on rectangular specimens (1.4 × 3.0 × 19.0 mm) of orthodontic PMMA. There was also no significant difference in hardness. There was no significant difference in surface roughness. It was confirmed that the orthodontic PMMA had no significant difference in mechanical properties according to the resin injection method of the orthodontic device.
Keywords
Orthodontic resin; 3-point flexural test; modulus; vickers hardness; mixing method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. U. Zachrisson. (2005). Global trends and paradigm shifts in clinical orthodontics. World journal of orthodontics. 6(3), 7. DOI: 10.1051/orthodfr/2017022.
2 M. M. Lino, C. S. O. Paulo, A. C. Vale, M. F. Vaz & L. S. Ferreira. (2013) Antifungal activity of dental resins containing amphotericin B-conjugated nanoparticles. Dent Mater. 29(10):e252-e62. DOI : 10.1016 / j.dental.2013.07.023   DOI
3 J .S. Kim, E. Kuk, K. N. Yu, J. H. Kim, S. J. Park & H. J. Lee et al .(2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. 3(1): 95-101. DOI: 10.1016/j.nano.2006.12.001   DOI
4 L. S. Acosta-Torres, Mendieta I, Nunez-Anita RE, Cajero-Juarez M, Castano VM. (2012) Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures. Int J Nanomedicine. 27:4777-86. DOI: 10.2147/IJN.S32391
5 J. Wen, F. Jiang, C. K. Yeh & Y. Sun. (2016) Controlling fungal biofilms with functional drug delivery denture biomaterials. Colloids and Surfaces B: Biointerfaces. 140:19-27. DOI: 10.1016/j.colsurfb.2015.12.028   DOI
6 W. Wang, S. Liao, Y. Zhu, M. Liu, Q. Zhao & Y. Fu. (2015) Recent Applications of Nanomaterials in Prosthodontics. J Nanomater. 2015:11. DOI.; 10.1155/2015/408643
7 Padovani GC, Feitosa VP, Sauro S, Tay FR, Duran G, Paula AJ, et al.(2015) Advances in Dental Materials through Nanotechnology: Facts, Perspectives and Toxicological Aspects. Trends Biotechnol. 33(11):621-36. DOI: 10.1016/j.tibtech.2015.09.005   DOI
8 De Castro DT, Valente ML, Agnelli JA, Lovato da Silva CH, Watanabe E, Siqueira RL, et al.(2016) In vitro study of the antibacterial properties and impact strength of dental acrylic resins modified with a nanomaterial. J Prosthet Dent. 115(2):238-46 DOI: 10.4103/JCD.JCD_266_17   DOI
9 H. Chen, B. Wang, D. Gao, M. Guan, L Zheng & H. Ouyang et al.(2013) Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small. 9(16):2735-46. DOI: 10.1002/smll.201202792   DOI
10 J. Chen, H. Peng, X. Wang, F. Shao, Z. Yuan & H. Han. (2014) Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale. 6(3):1879-89. DOI: 10.1039/c3nr04941   DOI
11 Morimune S, Nishino T, Goto T.(2012) Ecological Approach to Graphene Oxide Reinforced Poly (methyl methacrylate) Nanocomposites. ACS Appl Mater Interfaces. 4(7):3596-601.. DOI: 10.1021/am3006687   DOI
12 H. H. Lee, C. J. Lee & K. Asaoka. (2012) Correlation in the mechanical properties of acrylic denture base resins. Dent Mater J. 31(1):157-64. DOI: 10.4012/dmj.2011-205   DOI
13 Kenneth J. Anusavice. Phillips' Science of Dental Materials. 11 ed;2006;143-169,73-735.
14 Redding S, Bhatt B, Rawls HR, Siegel G, Scott K, Lopez-Ribot J. Inhibition of Candida albicans biofilm formation on denture material. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(5):669-72. DOI: 10.1016/j.tripleo.2009.01.021.   DOI
15 H. S. Noh, J. M. Kim, S. Kim & T. S. Jeong (2008). Effect of curing conditions on the monomerelution of orthodontic acrylic resin. J Korea Acad Pediatr Dent. 2008;35:477-484.
16 S. Y. Jeong, J. H. Kim, B. D. Yang, J. M. Park & K. Y. Song. Fracture toughness of self-curingdenture base resins with different polymerizing conditions. J Kor Acad Prosthodont2005;43:52-60. DOI: 10.4047/jap.2013.5.4.396
17 J. H. Lee. et al (2016). Development of long-term antimicrobial poly (methyl methacrylate) by incorporating mesoporous silica nanocarriers. Dent Mater 32, 1564-1574.   DOI
18 J. H. Jorge, E. T. Giampaolo, C. E. Vergani , A. L. Machado, A. C. Pavarina 7 I. Z. Carlos.(2006). Effect of post-polymerization heat treatments on the cytotoxicity of two denture base acrylic resins. J Appl Oral Sci., 14(3), 203-7. DOI: 10.1590/S1678-77572006000300011   DOI