• Title/Summary/Keyword: thermal bending

검색결과 469건 처리시간 0.025초

Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading

  • Ebrahimi, Farzad;Karimiasl, Mahsa;Selvamani, Rajendran
    • Advances in nano research
    • /
    • 제8권3호
    • /
    • pp.203-214
    • /
    • 2020
  • This paper investigated bending of magneto-electro-elastic (MEE) nanobeams under hygro-thermal loading embedded in Winkler-Pasternak foundation based on nonlocal elasticity theory. The governing equations of nonlocal nanobeams in the framework parabolic third order beam theory are obtained using Hamilton's principle and solved implementing an analytical solution. A parametric study is presented to examine the effect of the nonlocal parameter, hygro-thermal-loadings, magneto-electro-mechanical loadings and aspect ratio on the deflection characteristics of nanobeams. It is found that boundary conditions, nonlocal parameter and beam geometrical parameters have significant effects on dimensionless deflection of nanoscale beams.

원전 안전 3등급 고밀도 폴리에틸렌 매설 배관 맞대기 열 융착부의 굽힘 피로특성 평가 (Investigation of Bending Fatigue Behaviors of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants)

  • 김종성;이영주;오영진
    • 한국압력기기공학회 논문집
    • /
    • 제11권2호
    • /
    • pp.40-44
    • /
    • 2015
  • The fatigue behavior of thermal butt fusion in safety class III high-density polyethylene (HDPE) buried piping for nuclear power plants was investigated using load-controlled bending fatigue on four-point bend test specimens. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low- and medium-cycle fatigue regions while having a negligible effect in the high-cycle fatigue regions.

Comparative study on the bending of exponential and sigmoidal sandwich beams under thermal conditions

  • Aman, Garg;Mohamed-Ouejdi, Belarbi;Li, Li;Hanuman D., Chalak;Abdelouahed, Tounsi
    • Structural Engineering and Mechanics
    • /
    • 제85권2호
    • /
    • pp.217-231
    • /
    • 2023
  • The bending analysis of sandwich functionally graded (FG) beams under temperature circumstances is performed in this article utilizing Navier's solution-based parabolic shear deformation theory. For the first time, a comparative study has been carried out between the exponential and sigmoidal sandwich FGM beams under thermal conditions. During this investigation, temperature-dependent material characteristics are postulated. Both symmetric and unsymmetric sandwich examples have been studied. The effect of gradation law, gradation coefficient, and thickness scheme on beam behavior has been thoroughly investigated. Three possible temperature combinations at the top and bottom surfaces of the beam are also investigated. Beams with a higher proportion of ceramic to metal are shown to be more resistant to thermal stresses than beams with a higher proportion of metal.

잔류 열 변형을 고려한 평판형 압전 복합재료 유니모프 작동기의 해석 (Analysis of a Plate-type Piezoelectric Composite Unimorph Actuator Considering Thermal Residual Deformation)

  • 구남서;우성충
    • 대한기계학회논문집A
    • /
    • 제30권4호
    • /
    • pp.409-419
    • /
    • 2006
  • The actuating performance of plate-type unimorph piezoelectric composite actuators having various stacking sequences was evaluated by three dimensional finite element analysis on the basis of thermal analogy model. Thermal residual stress distribution at each layer in an asymmetrically laminated plate with PZT ceramic layer and thermally induced dome height were predicted using classical laminated plate theory. Thermal analogy model was applied to a bimorph cantilever beam and LIPCA-C2 actuator in order to confirm its validity. Finite element analysis considering thermal residual deformation showed that the bending behavior of piezoelectric composite actuator subjected to electric loads was significantly different according to the stacking sequence, thickness of constituent PZT ceramic and boundary conditions. In particular, the increase of thickness of PZT ceramic led to the increase of the bending stiffness of piezoelectric composite actuator but it did not always lead to the decrease of actuation distance according to the stacking sequences of piezoelectric composite actuator. Therefore, it is noted that the actuating performance of unimorph piezoelectric composite actuator is rather affected by bending stiffness than actuation distance.

Flexible 기판의 Bending Stress에 대한 Encapsulation Layer의 영향 (The Influence of Encapsulation Layer Incorporated into Flexible Substrates for Bending Stress)

  • 박준백;서대식;이상극;이준웅;김영훈;문대규;한정인
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.473-476
    • /
    • 2003
  • This paper shows necessity of encapsulation layer to maximite flexibility of brittle indium-tin-oxide (ITO) on polymer substrates. And, Young's modulus (E) of encapsulation layer have an significant effect on external bending stress and the coefficient of thermal expansion (CTE) of that have a significant effect on internal thermal stress. To compare magnitude of total mechanical stress including both bending stress and thermal stress, the mechanical stress of triple-layer structure (substrate / ITO / encapsulation layer or substrate / buffer layer / ITO) can be quantified and numerically analyzed through the farthest cracked island position. As a result, it should be noted that multi-layer structures with more elastic encapsulation material have small mechanical stress compared to that of buffer and encapsulation structure of large Young's modulus material when they were externally bent.

  • PDF

취성/연성 파괴에 대한 수명예측 모델 및 신뢰성 설계 (Development of Reliability Design Technique and Life Prediction Model for Electronic Components)

  • 김일호;이순복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1740-1743
    • /
    • 2007
  • In this study, two types of fatigue tests were conducted. First, cyclic bending tests were performed using the micro-bending tester. A four-point bending test method was adopted, because it induces uniform stress fields within a loading span. Second, thermal fatigue tests were conducted using a pseudo power cycling machine which was newly developed for a realistic testing condition. The pseudo-power cycling method makes up for the weak points in a power cycling and a chamber cycling method. Two compositions of solder are tested in all test condition, one is lead-free solder (95.5Sn4.0Ag0.5Cu) and the other is eutectic lead-contained solder (63Sn37Pb). In the cyclic bending test, the solder that exhibits a good reliability can be reversed depending on the load conditions. The lead-contained solders have a longer fatigue life in the region where the applied load is high. On the contrary, the lead-free solder sustained more cyclic loads in the small load region. A similar trend was detected at the thermal cycling test. A three-dimensional finite element analysis model was constructed. A finite element analysis using ABAQUS was performed to extract the applied stress and strain in the solder joints. A constitutive model which includes both creep and plasticity was employed. Thermal fatigue was occurred due to the creep. And plastic deformation is main damage for bending failure. From the inelastic energy dissipation per cycle versus fatigue life curve, it can be found that the bending fatigue life is longer than the thermal fatigue life.

  • PDF

압전재료를 이용한 위성체 구조물의 열 진동 제어 (Thermally Induced Vibration Control of Flexible Spacecraft Appendages Using by Piezoelectric Material)

  • 윤일성;송오섭;김규선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.303-310
    • /
    • 2002
  • The bending vibration and thermal flutter instability of spacecraft booms modeled as circular thin-walled beams of closed cross-section and subjected to thermal radiation loading is investigated in this paper. Thermally induced vibration response characteristics of a composite thin walled beam exhibiting the circumferantially uniform system(CUS) configuration are exploited in connection with the structural flapwise bending-lagwise bending coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. The numerical simulations display deflection time-history as a function of the ply-angle of fibers of the composite materials, damping factor, incident angle of solar heat flux, as well as the boundary of the thermal flutter instability domain. The adaptive control are provided by a system of piezoelectric devices whose sensing and actuating functions are combined and that an bonded or embedded into the host structure.

  • PDF

고분자량 Polyethylene Glycol 처리에 따른 모직물과 유사모직물의 보온성과 태의 향상 방안 모색 (An Approach to Improve Thermal Insulation Properties and Fabric Hand of Wool and Wool-like Fabrics under High Molecular Polyethylene Glycol Treatment)

  • 조길수;이은주
    • 한국의류학회지
    • /
    • 제21권6호
    • /
    • pp.1041-1050
    • /
    • 1997
  • This study was carried out to improve the thermal insulation properties of wool and wool- like fabrics by treating the fabrics with polyethylene glycol, to evaluate the fabric hand of PEG treated wool and wool-like fabrics and to grade up the fabric hand of the treated fabrics by treating with softening agents. Wool and wool-like fabrics were treated with high molecular PEG-8,000 by PDC. The thermal release/storage properties were measured on a DSC. Hand of specimens were evaluated by KES-FB system. The results were as follows; 1. PEG-treated fabrics showed thermal storage and thermal release properties by DSC and the heat contents were generally proportional to the add-ons. 2. PEG-treated fabrics showed higher Koshi and lower Numeri and Sofutosa values due to lower tensile energy and recovery and higher bending rigidity and shear stiffness as the add- ons increased. 3. PEG-treated fabrics showed much lower bending rigidity after softening agents treatment.

  • PDF

Ball-on-3 ball test에 의한 알루미나 세라믹스의 열충격 거동 (Thermal shock behavior of alumina ceramics by ball-on-3 ball test)

  • 이중현;박성은;한봉석;이홍림
    • 한국세라믹학회지
    • /
    • 제36권10호
    • /
    • pp.1062-1068
    • /
    • 1999
  • 상온 25$^{\circ}C$의 증류수에 단일 열충격을 시행한 후 ball-on-3 ball test로 강도를 측정하고 강도의 변화를 관찰하였다. 시편은 상용 알루미나 시편을 사용하였고, disc 형태의 시편에 대하여 열충격 후의 균열의 모양과 강도 시험 후의 균열의 모양을 잉크 침투법에 의해 관찰하였다. 통계적인 파괴 확률방법을 제시하였으며, thermal shock Weibull plot을 이용하여 3점 꺾임 강도와 비교하였다. ball-on-3 ball test 강도에 미치는 인자에 대해 통계학적인 접근을 통해 관찰한 결과, 시편중심에서 균열까지의 거리가 균열 밀도보다 더 큰 영향을 미치고 있음을 알 수 있었다.

  • PDF

알루미나 세라믹스의 열피로 거동 (Themal Fatigue Behavior of Alumina Ceramics)

  • 정우찬;한봉석;이홍림;이형직
    • 한국세라믹학회지
    • /
    • 제35권10호
    • /
    • pp.1094-1100
    • /
    • 1998
  • The thermal fatigue behavior of alumina ceramics was investigated by water quenching method. Single-quench thermal shock tests were performed to decide the critical thermal shock temperature difference ($\Delta$Tc) which was found to be 225$^{\circ}C$ Cyclic thermal shock fatigue tests were performed at temperature diff-erences of 175$^{\circ}C$, 187$^{\circ}C$ and 200$^{\circ}C$ respectively. After cyclic thermal shock fatigue test the distributions of retained strength and crack were observed. Retained strength was measured by four point bending method and crack observation method bydye penetration. In terms of the retained strength distribution the critical number of thermal shock cycles(Nc) were 7 for $\Delta$T=200$^{\circ}C$, 35 for $\Delta$T=187$^{\circ}C$ and 180for $\Delta$T=175$^{\circ}C$ respec-tively. In terms of the crack observation the critical number of thermal shock cycles were 5 for $\Delta$T==200$^{\circ}C$ 20 for $\Delta$T==187$^{\circ}C$ and 150 for $\Delta$T=175$^{\circ}C$ respectively. The difference of Nc investigated by two different methods is due to the formation of the longitudinal cracks which had no effect on the four point bending strength. Therefore the thermal fatigue behavior of alumina ceramics could be more accurately described by the crack observation method than the retained strength measurement method.

  • PDF