• Title/Summary/Keyword: thermal behaviour

Search Result 229, Processing Time 0.025 seconds

Fatigue Life Prediction of Weldment with Damage Mechanics (손상역학을 이용한 용접부의 피로수명예측)

  • Chung, Heung-Jin;Yoo, Byoung-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.60-64
    • /
    • 2008
  • According to previous research, welding-induced stress in steel structures can significantly affect the fatigue behaviour; it produces initial damage of weldiug part of structure locally and residual stresses reduce the fatigue strength after welding precess. In this study, through continuum damage mechanics, we can estimate the weldiug damage using the stress and strain history during welding process and the effect of welding residual stress for assessment of fatigue life. The variation of welding-induced stresses and strains need be traced precisely in advance for a reliable weldiug damage assessment. In this study, a damage and fatigue analysis techniques for steel structures with welding-induced residual stress are presented. First, We calculate the history of temperature according with welding process. And residual stress with a welding thermal history was evaluated by non-linear thermal stress analysis. Secondly, welding damage and fatigue life are estimated with kinetic damage law.

  • PDF

Temperature-dependent studies on catalytic hydrosilation of polyalkylsiloxane using NMR

  • Sul, Hyewon;Lee, Tae Hee;Lim, Eunsoo;Rho, Yecheol;Kim, Chong-Hyeak;Kim, Jeongkwon
    • Analytical Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.213-219
    • /
    • 2017
  • Polyalkylsiloxane has been spotlighted in pressure-sensitive adhesive (PSA) application due to excellent physical properties and good biocompatibility. Thermal behaviour of polyalkylsiloxane mixtures, such as thermal stability and heat flow, were studied using TG-DTA during catalytic hydrosilation. To understand reaction kinetics of cross-linking, catalytic hydrosilation of polyalkylsiloxane was monitored using variable temperature nuclear magnetic resonance (VT-NMR) as increased temperature. The formation of cross-linking bond $Si-CH_2-CH_2-Si$ was directly observed using distortionless enhanced by polarization transfer (DEPT) technique. Successfully polyalkylsiloxane PSA samples exhibited excellent adhesion properties by cross-linking reaction.

An Experimental Study on Thermal Characteristics of Journal Bearing (저어널 베어링의 온도 특성에 관한 실험적 연구)

  • 서태설;김경웅
    • Tribology and Lubricants
    • /
    • v.3 no.2
    • /
    • pp.68-71
    • /
    • 1987
  • This paper deals with some thermal Characteristics of journal bearing such as the behaviour of the maximum bearing temperature, the lubricant's carry-over in the inlet region and so on. Temperatures of the bearing and the lubricants being supplied and discharged were measured along with shaft speed and bearing load. The results showed that with the increase of the Shaft speed, the maximum temperature rose at any shaft speed at a defferent rate of change defending on the flow regime of the lubricant film. And the lower eccentricity ratio is the more lubricant's carry-over occur. Additionally it was partially proved that the oil discharge temperature and the maximum temperature changed in quite different each other.

Finite Element Analysis of Laser Class Bonding Process (레이저 유리 접합 공정의 유한요소해석)

  • Hong, Seok-Kwan;Kang, Jeong-Jin;Byun, Cheol-Woong
    • Laser Solutions
    • /
    • v.11 no.3
    • /
    • pp.10-15
    • /
    • 2008
  • This study is aimed to analyse the laser glass bonding process numerically. Due to the viscoelastic behaviour of glass, the extremely large deformation of the frit seal is resulted continuously over the transition temperature, so that the thermal boundary condition be changed in the entire calculation process. The commercial FEM algorithm is restrictively able to remesh the large geometrical boundary shape and to adapt the boundary conditions simultaneously. According to our manual adaptation of increasing the laser line intensity to 700 mW/mm, it is possible to estimate the thermal glass bonding process under the fracture stress in principle. But it should be studied further in the case of high laser line intensity.

  • PDF

A study on the behaviour of axisymmetric outer tube and inner movable part(case) under pressure and thermal load (열하중 및 내압을 받는 축대칭 튜브와 내부 운동체의 거동해석 연구)

  • Kim, I.W.;Lee, S.B.;Park, Y.J.;Lee, Y.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.114-125
    • /
    • 1993
  • Thermoelastoplastic analysis of a typical device consisting of fixed tube and movable case having an inital clearance in between, which is subjected to pressure and thermal load, has been carried out to examine the cause of malfunction mainly at high temperature condition, and to improve the design. Stresses, deformed shape, interface state and their effects on normal function of case are discussed by using finite element method. The extraction energy can be remarkably reduced by changing the configuration of tube from the present design (Parallel type) to the improved design (Tapered type). This effect has been proved by sustained cyclic function test.

  • PDF

Numerical Study of Behaviour Characteristics of Mechanical Seals with Inclined Friction Faces (경사진 마찰접촉면을 갖는 기계경사면시일의 거동특성에 관한 수치적 연구)

  • Kim Chung Kyun
    • Tribology and Lubricants
    • /
    • v.20 no.6
    • /
    • pp.314-321
    • /
    • 2004
  • Thermal distortion of non-contacting mechanical seals with inclined rubbing surfaces is affected by friction heat between seal ring and seal seat. The circulation fluid along the inclined rubbing surfaces maintains cooling friction heat and lubrication between the sealing surfaces of mechanical seal with an inclined surface. Mechanical seals with inclined sealing surfaces may be useful for reducing the frictional heating and power loss because of the introduction of cooling fluids to the sealing gap between seal ring and seal seat. From the FEM computed result shows that the thermal behavior and von Mises stress of sealing faces with an inclined angle 60 are much reduced in comparison of the conventional mechanical face seal with rectangular sealing surfaces.

Simulating astrophysical shocks with a combined PIC MHD code

  • van Marle, Allard Jan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.56.2-56.2
    • /
    • 2018
  • Astrophysical shocks accelerate particles to high velocities, which we observe as cosmic rays. The acceleration process changes the nature of the shock because the particles interact with the local magnetic field, removing energy and potentially triggering instabilities. In order to simulate this process, we need a computational method that can handle large scale structures while, at the same time, following the motion of individual particles. We achieve this by combining the grid magnetohydrodynamics (MHD) method with the particle-in-cell (PIC) approach. MHD can be used to simulate the thermal gas that forms the majority of the gas near the shock, while the PIC method allows us to model the interactions between the magnetic field and those particles that deviate from thermal equilibrium. Using this code, we simulate shocks at various sonic and Alfvenic Mach numbers in order to determine how the behaviour of the shock and the particles depends on local conditions.

  • PDF

The rheological behavior of collagen dispersion/poly(vinyl alcohol) blends

  • Lai, Guoli;Du, Zongliang;Li, Guoying
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.2
    • /
    • pp.81-88
    • /
    • 2007
  • Blends of collagen dispersion (COL) with poly(vinyl alcohol) (PVA) in different weight ratios were investigated by oscillatory rheometry, Fourier transform-infrared spectroscopy and scanning electron microscopy. It was found that even with 80% of PVA, the COL/PVA blends behaved more like collagen dispersion than pure PVA solution in the dynamic thermal and frequency processing, for instance, a dominant elastic appearance (G'>G"), a similar shear thinning behavior and the thermal denaturation below $40^{\circ}C$. However, influence on the blend behaviour by PVA was noticeable, for instance, an increase of dynamic denaturation temperature, the decreasing intensity of amide I, II and III bands as well as the diminishing irregular pores on the surface of blends. The interaction between collagen and PVA could be observed, especially at the regions with low content or high content of PVA.

The Effect of the Thermal Stress on the Mechanical Behaviour and Permeability of Rocks -1.mechanical Bechviour (열응력이 암석의 역학적 거동과 투수성에 미치는 영향 -I. 역학적 거동)

  • 윤용균;이희근
    • Tunnel and Underground Space
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 1996
  • Pocheon granite specimens were thermally treated with cycles of predetermined temperatures ranging 2$0^{\circ}C$ to $600^{\circ}C$. Characterization of thermally-induced microcracks were carried out using optical microscopy and their effect on the various physical & mechanical properties were studied. Generally. uniaxial compressive strength, Young's modulus, Poisson's ratio, elastic wave velocity and specific gravity were found to decrease with increasing temperature. From 30$0^{\circ}C$ upwards, negative lateral strains were observed, which resulted in negative Poisson's ratio. Dynamic Young's modulus and Poisson's ratio were found to be generally most sensitive indicators to thermal cracking.

  • PDF

Analyses of Thermodynamic Vaporization Behaviour and Voloxidaion Conditions for Metal Oxides (금속산화물의 열역학적 휘발 거동 및 휘발 산화 공정의 조건 분석)

  • Lee, Young Woo;Park, So Young;Park, Byung Heung
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.2
    • /
    • pp.7-10
    • /
    • 2013
  • Metal oxides are known as stable materials during a thermal treatment. However, some oxides are readily evaporated at high temperatures. A voloxidation process is a head-end process for a pyroprocessing dealing with spent nuclear fuels (SF). In SFs, fission productions are in the form of oxides and some of them would be evaporated during the voloxidation process. Therefore, it is of importance to analyse the vapor pressures of metal oxides so that the material flows throughout the pyroprocessing could be estimated. In this work, vapor pressures of relevant metal oxides were calculated and presented to draw a baseline on the material flow of the pyroprocessing.

  • PDF