• Title/Summary/Keyword: thermal behaviour

Search Result 229, Processing Time 0.023 seconds

Effect of Thermal Stress on Sexual Behaviour of Superovulated Bharat Merino Ewes

  • Maurya, V.P.;Naqvi, S.M.K.;Gulyani, R.;Joshi, A.;Mittal, J.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1403-1406
    • /
    • 2005
  • The present study was undertaken to study the effect of thermal stress on sexual behaviour of superovulated ewes. Fourteen adult Bharat Merino ewes with an average body weight of 29.4${\pm}$2.34 kg were randomly allocated into two groups of 7 each. All the animals were grazed on natural pasture in the morning and evening hours and housed in shed during night. Animals of Group-1 were housed in shed from 10:00 to 16:00 h while the animals of Group-2 were exposed to thermal stress in a hot chamber ($40^{\circ}C$ /6 h/day). All the animals were offered drinking water once a day at 16:30 h. Meteorological observations i.e. dry bulb, wet bulb, minimum and maximum temperature were recorded daily inside the shed as well as in hot chamber throughout the experimental period. For superovulation of animals, standard protocol developed at the Institute, using FSH (Ovagen 5.4 mg in eight injections) and PMSG (200 IU) was followed. Various sexual behaviour parameters (circling, tail fanning, head turning, standing and approaching to ram) and estrus incidence (onset of estrus and estrus duration) were observed in both the groups. The different estrus symptoms were graded subjectively on arbitrary scale of 0-5 where 0 representing no sexual behaviour (0%) and 5 representing maximum intensity in sexual behaviour (100%). Estrus was detected with the help of a marked aproned ram of proven vigor at six hourly intervals. The average percent values for sexual behaviour parameters recorded in Group-1 and Group-2 animals were 53.7${\pm}$3.76 vs. 41.1${\pm}$2.18 for circling, 71.8${\pm}$5.42 vs. 49.0${\pm}$4.41 for tail fanning, 64.7${\pm}$3.30 vs. 44.5${\pm}$4.34 for head turning, 90.1${\pm}$3.16 vs. 75.8${\pm}$4.02 for standing and 63.8${\pm}$4.8 vs. 41.9${\pm}$4.58 for approaching to ram. Animals exposed to thermal stress had significantly lower values of these sexual behaviour parameters. The animals kept in shed exhibited estrus earlier (25.4${\pm}$1.12 h) and duration was higher (37.7${\pm}$1.59 h) as compared to animals exposed to thermal stress i.e. 30.6${\pm}$1.16 h and 31.7${\pm}$3.57 h, respectively. The findings of the study indicate that thermal stress reduces the intensity of sexual behaviour in ewes and may result in failure of the animal to mate and conceive.

Modelling of bonded and unbonded post-tensioned concrete flat slabs under flexural and thermal loading

  • Mohammed, Abbas H.;Taysi, Nildem
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.595-606
    • /
    • 2017
  • During their life span, post-tensioned concrete structures may be exposed to thermal loads. Therefore, there has been a growing interest in research on the advanced analysis and design of post-tensioned concrete slabs subjected to thermal loads. This paper investigates the structural behaviour of post-tensioned one-way spanning concrete slabs. A nonlinear finite element model for the analysis of post- tensioned unbonded and bonded concrete slabs at elevated temperatures was developed. The interface between the tendon and surrounding concrete was also modelled, allowing the tendon to retain its profile shape during the deformation of the slab. The load-deflection behaviour, load-force behaviour in the tendon, and the failure modes are presented. The numerical analysis was conducted by the finite element ANSYS software and was carried out on two different one-way concrete slabs chosen from literature. A parametric study was conducted to investigate the effect of several selected parameters on the overall behavior of post-tensioned one-way concrete slab. These parameters include the effect of tendon bonding, the effect of thermal loading and the effect of tendon profile. Comparison between uniform thermal loading and nonuniform thermal loading showed that restrained post tensioned slab with bottom surface hotter has smaller failure load capacity.

An analysis of the thermal behaviour on the spindle system for machine tools (공작기계용 주축계에 관한 열적거동 해석)

  • 고태조
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.90-97
    • /
    • 1996
  • The thermal deformation of a machine tool spindle influences the performance of the manufacturing systems for precision products. In this research, thermal analysis of a high speed machine tool spindle with the rolling bearing and the built-in motor is carried out by using Finite Difference Method. The thermal boundary conditions describing the heat generation in the bearing and built-in motor are considered in the simulation. And various convective boundary conditions are assumed with the empirical formula in the references. From the simulation results, the characteristics of each element affecting the dynamic thermal behaviour of the machine tool spindle system have been clarified. Therefore, this model can be well applied to the future development of the high speed spindle systems.

  • PDF

An analysis of the thermal behaviour of a high speed machine tool spindle (고속공작기계 주축의 열적거동 특성 해석)

  • 고태조
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.03a
    • /
    • pp.9-16
    • /
    • 1995
  • The thermal deformation of machine tool spindle influences the performance of the manufacturing systems for precision products. In this research thermal analysis of a high speed machine tool spindle with the rolling bearing and the built-in motor is carried out using Finite Difference Method. The thermal boundary conditions describing the hear generation in the bearing and built-in motor are considered in the simulation. And various convective boundary conditions are assumed with the empirical formula in the references. From the simulation results the characteristics of each element affecting the dynamic thermal behaviour of the machine tool spindle systems have been clarified. This model can be well applied to the future development of the high speed spindle systems.

  • PDF

A Study on the Thermal Behaviour of Layered Solids in Sliding Contacts (얇은 layer가 존재하는 접촉표면의 열적거동에 대한 연구)

  • 안효석
    • Tribology and Lubricants
    • /
    • v.5 no.2
    • /
    • pp.42-47
    • /
    • 1989
  • The thermal behaviour of layerd solids, typified in practice by surface coated materials, is evaluated for the specific case of a fast moving heat source. This is intended to represent the particular instance of solids in sliding contact and the consequences of friction. The finite difference method has been utilised to establish the temperature distributions at the surface and also the sub-surface region for coating materials which are either less conductive or more conductive than the substrate to which they are attached. The effects of variation in layer thickness, and also the load, speed and friction coefficient, are evaluated.

A Study on the Thermal Behaviour of Automotive Disc Brakes Using FEA and Dynamometer (FEA와 다이나모메터를 이용한 자동차 디스크 브레이크의 열적 거동에 관한 연구)

  • 박범식;손영지;장성규;전언찬
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.45-50
    • /
    • 2000
  • While braking cars, a large amount of energy is taken into the brake system in a short period of time. This leads to some problems ; cracking of the disc, non-uniform wear of pad and disc, fade. Thus it is important to measure the contact thermal behaviour precisely between disc and pad. The measurements must be considered to design the brake system. The paper describes methods to analysis the problem of the thermal behavior on the ventilated disc with ANSYS-a program of FEA and a brake dynamometer. According to this way, the paper can present the error between the data by the dynamometer and the results of analysis by ANSYS.

  • PDF

Physics-based modelling and validation of inter-granular helium behaviour in SCIANTIX

  • Giorgi, R.;Cechet, A.;Cognini, L.;Magni, A.;Pizzocri, D.;Zullo, G.;Schubert, A.;Van Uffelen, P.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2367-2375
    • /
    • 2022
  • In this work, we propose a new mechanistic model for the treatment of helium behaviour at the grain boundaries in oxide nuclear fuel. The model provides a rate-theory description of helium inter-granular behaviour, considering diffusion towards grain edges, trapping in lenticular bubbles, and thermal resolution. It is paired with a rate-theory description of helium intra-granular behaviour that includes diffusion towards grain boundaries, trapping in spherical bubbles, and thermal re-solution. The proposed model has been implemented in the meso-scale software designed for coupling with fuel performance codes SCIANTIX. It is validated against thermal desorption experiments performed on doped UO2 samples annealed at different temperatures. The overall agreement of the new model with the experimental data is improved, both in terms of integral helium release and of the helium release rate. By considering the contribution of helium at the grain boundaries in the new model, it is possible to represent the kinetics of helium release rate at high temperature. Given the uncertainties involved in the initial conditions for the inter-granular part of the model and the uncertainties associated to some model parameters for which limited lower-length scale information is available, such as the helium diffusivity at the grain boundaries, the results are complemented by a dedicated uncertainty analysis. This assessment demonstrates that the initial conditions, chosen in a reasonable range, have limited impact on the results, and confirms that it is possible to achieve satisfying results using sound values for the uncertain physical parameters.

Effects of the Thermal Stress and Water Pressure on the Deformation Behavior of Granite (열응력과 수압이 화강암의 변형 거동에 미치는 영향)

  • Yoon, Yong-Kyun
    • Explosives and Blasting
    • /
    • v.29 no.1
    • /
    • pp.34-40
    • /
    • 2011
  • In this study, effects that thermal stress and water pressure have on the deformation behaviour of granite specimens recovered in Gagok Mine are estimated. To analyze effects of the thermal stress and water pressure on the deformation behaviour, granite specimens were preheated with cycles of predetermined temperatures ranging $200^{\circ}C$ to $700^{\circ}C$ and 500, 600, $700^{\circ}C$ specimens were pressurized to 7.5 MPa. The deformation behaviour of the specimens had been studied by performing uniaxial compressive tests. Axial and lateral strains of specimens were found to increase with increasing temperature, and above $600^{\circ}C$, the increase of strains were more pronounced. The reduction trends of uniaxial compressive strength and Young's modulus with temperature appeared to follow an exponential decay function. Specimens under water pressure showed the more inelastic deformation characteristics, which means that water pressure has an effect on the widening and extending of micro-cracks existed in preheated specimens.

Numerical analysis on the behaviour of reinforced concrete frame structures in fire

  • Dzolev, Igor M.;Cvetkovska, Meri J.;Ladinovic, Dorde Z.;Radonjanin, Vlastimir S.
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.637-647
    • /
    • 2018
  • Numerical approach using finite element method has been used to evaluate the behaviour of reinforced concrete frame structure subjected to fire. The structure is previously designed in accordance with Eurocode standards for the design of structures for earthquake resistance, for the ductility class M. Thermal and structural response are obtained using a commercially available software ANSYS. Temperature-dependent nonlinear thermal and mechanical properties are adopted according to Eurocode standards, with the application of constitutive model for the triaxial behaviour of concrete with a smeared crack approach. Discrete modelling of concrete and reinforcement has enabled monitoring of the behaviour at a global, as well as at a local level, providing information on the level of damage occurring during fire. Critical regions in frame structures are identified and assessed, based on temperatures, displacements, variations of internal forces magnitudes and achieved plastic deformations of main reinforcement bars. Parametric analyses are conducted for different fire scenarios and different types of concrete aggregate to determine their effect on global deformations of frame structures. According to analyses results, the three-dimensional finite element model can be used to evaluate the insulation and mechanical resistance criteria of reinforced concrete frame structures subjected to nominal fire curves.