• Title/Summary/Keyword: thermal behaviors

Search Result 767, Processing Time 0.027 seconds

The Effects of Hot Temperature on Impulsive Behaviors: The Role of Product Types as a Moderator

  • Ahn, Hee-Kyung
    • Asia Marketing Journal
    • /
    • v.14 no.3
    • /
    • pp.27-48
    • /
    • 2012
  • Temperature and weather are all around us, quite literally. Furthermore, temperature and weather not only permeate our atmosphere, constantly affecting our visceral states of warmth and coldness, but they metaphorically permeate our language. People, products, and ideas can all be "hot" or "cold." Given this ubiquity, it is perhaps surprising that relatively little research has systematically examined the influence of temperature on choice and judgment. Temperature-related words such as "hot" and "cold" are often used to describe impulsive and calculated behaviors, respectively. These metaphoric connotations of thermal concepts raise the question as to whether temperature, psychological states and decision making are related to each other, and if so, how. The current research examines these questions and finds support for a relationship. Across one field study and one laboratory experiment, I demonstrate that both hot ambient room temperature (Spa) and hot temperature primes (words) trigger decision outcomes in line with the metaphoric association between hot temperature and impulsivity. In the field study, participants were recruited in hot (40-50 degrees Celsius) and cold (10 degrees Celsius) rooms at a spa. Participants were simply asked to indicate their willingness-to-pay (WTP) for three product categories (travel package, birthday dinner, and cell phone). The results showed that participants in the hot room in comparison to those in the cold room were willing to pay more for the same products. Next, I tested if our results would go beyond ambient temperature and would hold if I were to prime temperature concepts by using a different priming method (i.e., subliminal vs. supraliminal). In line with the previous findings in the spa, participants in the hot priming condition were more likely to choose the wrong answer for the bat and baseball question than those in the cold priming condition. In addition, product type (e.g., pleasure vs. necessity) can moderate the effect of hot temperature on impulsivity. Mood and arousal did not mediate participants' responses. My findings seem to suggest that the effects of temperature on decision outcomes can be attributed to metaphoric associations rather than incidental mood or arousal. The current research applies a novel perspective in understanding the relationship between temperature and judgment and decision making. Also, the results have practical implications for packaging, advertising, merchandising, and pricing of goods and services, as well as for public policy and awareness. One of the most natural implications of my findings would be that retailers would be better off carrying more impulse purchase items on hot days. Furthermore, point-of-purchase promotions encouraging impulse purchase is more likely to be effective in retail environments with higher temperature than with lower temperature. In addition, advertisements and product packages evoking hot temperature associations (e.g., beach, sunshine, summer) might lead consumers to pay higher price for the advertised product than those with cold temperature associations.

  • PDF

Effect of Non-Conducting Filler Additions on Anisotropic Conductive Adhesives(ACAs) Properties and the Reliability of ACAs Flip Chip on Organic Substrates (이방성 전도 접착제 물성과 유기 기판 플립 칩의 신뢰성에 미치는 비전도성 충진재의 영향)

  • Im, Myeong-Jin;Baek, Gyeong-Uk
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.184-190
    • /
    • 2000
  • We investigated the effect of filler content on the thermo-mechanical properties of modified ACA composite materials by incorporation of non-conducting fillers and the reliability of flip chip assembly on organic substrates using modified ACA composite materials. For the characterization of modified ACA s composites with different content of non-conducting fillers, differential scanning calorimeter (DSC), and thermo-gravimetric analyzer (TGA), dynamic mechanical analyzer (DMA), and thermo-mechnical analyzer (TMA) were utilized. As the non-conducting filler content increased, CTE values decreased and storage modulus at room temperature increased. In addition, the increase in the content of filler brought about the increase of Tg^{DSC}$ and $Tg^{TMA}$. However, the TGA behaviors stayed almost the same. Contact resistance changes were measured during reliability tests such as thermal cycling, high humidity and temperature, and high temperature at dry condition. It was observed that reliability results were significantly affected by CTEs of ACA materials especially at the thermal cycling test. Results showed that flip chip assembly using modified ACA composites with lower CTEs and higher modulus by loading non-conducting fillers exhibited better contact resistance behavior than conventional ACAs without non-conducting fillers.

  • PDF

Dielectric Properties of $Ta_2O_{5-X}$ Thin Films with Buffer Layers

  • Kim, In-Sung;Song, Jae-Sung;Yun, Mun-Soo;Park, Chung-Hoo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.12C no.4
    • /
    • pp.208-213
    • /
    • 2002
  • The present study describe the electrical performance of amorphous T $a_2$ $O_{5-X}$ fabricated on the buffer layers Ti and Ti $O_2$. T $a_2$ $O_{5-X}$ thin films were grown on the Ti and Ti $O_2$ layers as a capacitor layer using reactive sputtering method. The X-ray pattern analysis indicated that the two as-deposited films were amorphous and the amorphous state was kept stable on the RTA(rapid thermal annealing) at even $700^{\circ}C$. Measurements of dielectric properties of the reactive sputtered T $a_2$ $O_{5-X}$ thin films fabricated in two simple MIS(metal insulator semiconductor), structures, (Cu/T $a_2$ $O_{5}$ Ti/Si and CuT $a_2$ $O_{5}$ Ti $O_2$Si) show that the amorphous T $a_2$ $O_{5}$ grown on Ti showed high dielectric constant (23~39) and high leakage current density(10$^{-3}$ ~10$^{-4}$ (A/$\textrm{cm}^2$)), whereas relatively low dielectric constant (~15) and tow leakage current density(10$^{-9}$ ~10$^{-10}$ (A/$\textrm{cm}^2$)) were observed in the amorphous T $a_2$ $O_{5}$ deposited on the Ti $O_2$ layer. The electrical behaviors of the T $a_2$ $O^{5}$ thin films were attributed to the contribution of Ti- $O_2$ and the compositionally gradient Ta-Ti-0, being the low dielectric layer and high leakage current barrier. In additional, The T $a_2$ $O_{5}$ Ti $O_2$ thin films exhibited dominant conduction mechanism contributed by the Poole-Frenkel emission at high electric field. In the case of T $a_2$ $O_{5}$ Ti $O_2$ thin films were related to the diffusion of Ta, Ti and O, followed by the creation of vacancies, in the rapid thermal treated thin films.films.

Residual Stress Behavior and Physical Properties of Colorless and Transparent Polyimide Films (무색 투명 폴리이미드 박막의 잔류응력 거동 및 특성분석)

  • Nam, Ki-Ho;Lee, Wansoo;Seo, Kwangwon;Han, Haksoo
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.510-517
    • /
    • 2014
  • A series of polyimide (PI) was prepared by reacting 4,4'-(hexafluoroisopropylidene)-diphthalic anhydride (6FDA) as the anhydride and bis(3-aminophenyl) sulfone (APS), bis[4-(3-aminophenoxy)-phenyl] sulfone (BAPS), 2,2-bis(4-aminophenyl)-hexafluoropropane (6FPD), 2,2-bis[4-(4-aminophenoxy)-phenyl]hexafluoropropane (6FBAPP), 2,2'-bis(trifluoromethyl)benzidine (TFDB), or 1,4-phenylenediamine (PDA) as the diamine. Residual stress behaviors were detected in-situ during thermal imidization of the polyimide precursors using a thin film stress analyzer (TFSA), and interpreted with respect to their morphology. According to the molecular orientation and packing order, the residual stress varied from 23.1 to 12.5 MPa, decreased with increasing chain rigidity. The thermal properties of the PI films were investigated using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and thermomechanical analysis (TMA). Their optical properties were measured by ultraviolet-visible spectrophotometer (UV-vis), and spectrophotometry. The properties of PI films were found to be strongly dependent upon the morphological structure. However, trade-offs between residual stress and optical properties were identified.

Liquid-Liquid Equilibria of Poly(4-vinylphenol)(PVPh)/Ethyl Acetate and PVPh/Butyl Acetate Solutions (Poly(4-vinylphenol)(PVPh)/Ethyl Acetate 및 PVPh/Butyl Acetate 용액계의 액-액 상평형)

  • Kim, Mi Kyung;Kim, Ki-Chang
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.704-714
    • /
    • 2005
  • Phase separations of Poly(4-vinylphenol)(PVPh)/Ethyl Acetate and PVPh/Butyl Acetate solutions were measured using the thermal optical analysis (TOA) method. The experimental phase separation data were correlated with liquid-liquid equilibria relations based on PC-SAFT equation of state. The phase separations of these system showed the behaviors of LCST (lower critical solution temperature)-type. The measured cloud temperatures were lowered with increasing in molecular weights of polymer(PVPh), and cloud temperatures of PVPh/Ethyl Acetate solutions shifted to lower temperature regions, compared to the PVPh/Butyl Acetate solutions. Extents of cross-association between solvent molecule and polymer in the PVPh/Ethyl Acetate solutions were measured using the FT-IR spectrum analysis method, and cross-association parameters of PC-SAFT model were estimated from experimental extents of cross-association. By using the estimated cross-association parameters between PVPh and solvent molecule, binodal and spinodal curves of liquid-liquid equilibria in PVPh/Ethyl Acetate and PVPh/Butyl Acetate solutions were calculated from PC-SAFT equation of state. The calculated binodal curves of these system were shown to be well agreeable with the experimental cloud temperature curves.

Archaeological Scientific Characteristics of Patternless Pottery with Talc Temper: Baekseokdong Gojaemigol Site in Cheonan, Korea (활석비짐 무문토기의 고고과학적 특성: 천안 백석동 고재미골 유적)

  • Kim, Su Kyoung;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.31 no.2
    • /
    • pp.159-173
    • /
    • 2015
  • The patternless potteries excavated from the Baekseokdong Gojaemigol site in Cheonan, was subdivided into talc and non-talc (including amphibole) type pottery. The potteries showed black, reddish brown and yellowish brown colors, but represent to difference with occurrences and internal texture of raw materials and temper minerals. The all potteries and paleosoils are commonly high content of temper minerals with poorly sorting and roundness of particles, and the paleosoils composed mainly of quartz, plagioclase, mica, chlorite and kaolinite. Between the talc and non-talc type potteries are very similar with magnetic susceptibility, absorption ratio and specific gravity. Geochemical behaviors of major, minor, compatible and incompatible elements in talc pottery are very similar with amphibole, non-talc pottery and paleosoils, and well correspondence with enrichment and deficiency patterns of each element, and the talc and amphibole potteries are highly enriched patterns of MgO concentration. In paleosoils of Gojaemigol site, talc and amphibole are not detected, therefore, making the pottery of the site estimate the possible to artificial additions of the temper minerals of talc and amphibole used interbedded talc layer within gneiss complex near the Baekseokdong area. Based on the phase relations, differential thermal and thermal gravimetric analyses, the potteries could be classified into two groups by firing temperature. The one group of talc temper pottery fired from 800 to $870^{\circ}C$ and the other group of amphibole and non-talc temper pottery revealed of 900 to $950^{\circ}C$.

Wear Property of HVOF WC-CoCr Coating Manufactured by Optimal Coating Process (최적 고속화염용사코팅 공정기술에 의하여 제조된 WC-CoCr 코팅의 마모 특성)

  • Song, Ki O;Cho, Tong Yul;Yoon, Jae Hong;Fang, W.;Youn, Seok Jo;Youn, Kuk Tae;Suh, Chang Hee;Hwang, Soon Young;Ha, Sung Sik
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.351-356
    • /
    • 2008
  • Thermally sprayed tungsten carbide-based powder coatings are being widely used for a variety of wear resistance applications. The coating deposited by high velocity processes such as high velocity oxy-fuel (HVOF) thermal spraying is known to provide improved wear resistant property. In this study, optimal coating process (OCP) is obtained by the study of coating properties such as surface hardness, porosity, surface roughness and microstructure of 9 coatings prepared by Taguchi program for 3 levels of four spray parameters. The Friction and wear behaviors of HVOF WC-CoCr coating prepared by OCP, electrolytic hard chrome (EHC) plating and Inconel718 (In718) are investigated by reciprocating sliding wear test at $25^{\circ}C$, $450^{\circ}C$. Friction coefficients (FC) of all of the 3 samples are decreased as increasing sliding surface temperature from $25^{\circ}C$ to $450^{\circ}C$. FC of WC-CoCr decreases as increasing the surface temperature from $0.33{\pm}0.02$ at $25^{\circ}C$ to $0.26{\pm}0.02$ at $450^{\circ}C$, showing the lowest FC among the 3 samples. Wear trace (WT) and wear depth (WD) of WC-CoCr are smaller than those of EHC and In718 both at $25^{\circ}C$ and $450^{\circ}C$. These show that WC-CoCr is highly recommendable for protective coating on In718 and other metal components.

The Lubricant Effect of Oxidation and Wear Products of HVOF Co-alloy T800 Powder Coating

  • Cho, Tong Yul;Yoon, Jae Hong;Kim, Kil Su;Song, Ki Oh;Youn, Suk Jo;Chun, Hui Gon;Hwang, Soon Young
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.159-163
    • /
    • 2007
  • Micron size Co-alloy 800 (T800) powder is coated on the high temperature, oxidation and corrosion resistant super alloy Inconel 718 substrate by the optimal high velocity oxy-fuel (HVOF) thermal spray coating process developed by this laboratory. For the study of durability improvement of high speed spindle operating without lubricants, friction and sliding wear behaviors of the coatings are investigated both at room and at an elevated temperature of $1000^{\circ}F(538^{\circ}C)$. Friction coefficients, wear traces and wear debris of coatings are drastically reduced compared to those of non-coated surface of Inconel 718 substrate both at room temperature and at $538^{\circ}C$. Friction coefficients and wear traces of both coated and non-coated surfaces are drastically reduced at higher temperature of $538^{\circ}C$ compared with those at room temperature. At high temperature, the brittle oxides such as CoO, $Co_{3}O_{4}$, $MoO_2$ and $MoO_3$ are formed rapidly on the sliding surfaces, and the brittle oxide phases are easily attrited by reciprocating slides at high temperature through oxidation and abrasive wear mechanisms. The brittle solid oxide particles, softens, melts and partial-melts play roles as solid and liquid lubricants reducing friction coefficient and wear. These show that the coating is highly recommendable for the durability improvement coating on the machine component surfaces vulnerable to frictional heat and wear.

Experimental Study of Steam Reforming Assisted by Catalytic Combustion in Concentric Annular Reactor (촉매연소를 이용한 동심 원관형 반응기 내의 수증기 개질 반응에 관한 실험적 연구)

  • Ghang, Tae-Gyu;Yu, Sang-Seok;Kim, Yong-Mo;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.375-381
    • /
    • 2010
  • In this paper, the heat-transfer characteristics of steam reforming in an annular reactor are presented. Heat is supplied by the catalytic combustion of syn-gas. The thermal behaviors of exothermic and endothermic reactions in a directly coupled concentric-tube packed-bed reactor were investigated experimentally. The gas mixture supplied for catalytic combustion consisted of the off-gas emitted from MCFC anode. Methane in steam at a suitable S/C (steam-to-carbon) ratio was used in the reforming reactions. On the basis of the experimental results, a simple simulation was performed to predict the temperature profile required in the reforming side of the reactor to achieve optimum hydrogen yield. The results of this study may be utilized as reference data in future studies for further development of coupled reactors.

Hot-Injection Thermolysis of Cobalt Antimony Nanoparticles with Co(II)-Oleate and Sb(III)-Oleate

  • Ahn, Jong-Pil;Kim, Min-Suk;Kim, Se-Hoon;Lee, Byung-Ha;Kim, Do-Kyung;Park, Joo-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.367-375
    • /
    • 2016
  • A novel strategy for the synthesis of $CoSb_2$ nanoparticles is demonstrated via preparation of novel organometallic complexes. Hydrated cobalt oleate (CoOl) and non-hydrated antimony oleate (SbOl) complexes are synthesized as precursors. The $CoSb_2$ nanoparticles are prepared by hot injection, which involves thermolysis of CoOl and SbOl in a non-coordinating solvent at $320^{\circ}C$. The coordination modes and distinct thermal behaviors of the intermediate non-hydrated SbOl complexes are comparatively investigated by thermo-analytical techniques. When the reaction temperature is increased, the particle size is found to increase linearly. The crystallinity of the $CoSb_2$ nanoparticles prepared at $250^{\circ}C$ is amorphous phase without any peaks. $CoSb_2$ structural peaks start to appear at $300^{\circ}C$ and dominant peaks with high crystallinity are synthesized at $320^{\circ}C$. The potential chemical structures of non-hydrated SbOl and their reaction mechanisms by thermolysis are elucidated. The elemental composition and crystallographic structure of $CoSb_2$ nanoparticles suggest a bimodal interaction of the organic shell and the nanoparticle surface, with a chemical absorbed inner layer and physically absorbed outer layer of carboxylic acid.