• 제목/요약/키워드: therapeutic targeting

검색결과 392건 처리시간 0.025초

Small Molecules Targeting for ESX-Sur2 Proteins' Interaction

  • Kwon, Young-Joo
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2008년도 Proceedings of the Convention
    • /
    • pp.77-86
    • /
    • 2008
  • It's been known that overexpression of the oncoprotein Her2 (eu/ErbB2), transmembrane receptor protein, occurs in human breast cancer. Her2-positive breast cancer patients who have Her2 overexpression show less therapeutic efficacy with enhanced metathesis and increased resistance to chemotherapy. So far, a humanized monoclonal antibody against Her2 protein called Herceptin is the only drug approved by Food and Drug Administration for treatment of Her2-overexpressing breast tumors. However, antibody therapy of Herceptin may not be ideal method for therapeutic intervention of Her2 protein expression. The therapeutic intervention of Her2 protein expression may be more efficiently achieved by inhibiting the expression of Her2 gene rather than by down-regulating the Her2 protein already overexpressed. Here, we found that the interaction of two proteins of ESX (an epithelial-restricted transcription factor) and DRIP130/CRSP130/Sur2 (a Ras-linked subunit of human mediator complexes) mediates the expression of Her2 gene. The association of ESX with Sur2 is mediated by a small hydrophobic face of 8-amino acid helix in ESX, suggesting that the ESX-Sur2 interaction can be a new novel target for Her2-positive cancer. The process to develop potent ESX-Sur2 interaction inhibitors targeting for Her2-positive cancer therapeutics will be discussed.

  • PDF

인간 단클론 항체 생산용 Humanized Xenomouse 제작의 기초 소재인 생쥐 Ig 중사슬 및 경사슬 Genomic DNA 클론의 확보 및 유전자 적중 벡터의 제작 (Isolation of Mouse Ig Heavy and Light Chain Genomic DNA Clones, and Construction of Gene Knockout Vector for the Generation of Humanized Xenomouse)

  • 이희경;차상훈
    • IMMUNE NETWORK
    • /
    • 제2권4호
    • /
    • pp.233-241
    • /
    • 2002
  • Background: Monoclonal antibodies (mAb) of rodent origin are produced with ease by hybridoma fusion technique, and have been successfully used as therapeutic reagents for humans after humanization by genetic engineering. However, utilization of these antibodies for therapeutic purpose has been limited by the fact that they act as immunogens in human body causing undesired side effects. So far, there have been several attempts to produce human mAbs for effective in vivo diagnostic or therapeutic reagents including the use of humanized xenomouse that is generated by mating knockout mice which lost Ig heavy and light chain genes by homologous recombination and transgenic mice having both human Ig heavy and light gene loci in their genome. Methods: Genomic DNA fragments of mouse Ig heavy and light chain were obtained from a mouse brain ${\lambda}$ genomic library by PCR screening and cloned into a targeting vector with ultimate goal of generating Ig knockout mouse. Results: Through PCR screening of the genomic library, three heavy chain and three light chain Ig gene fragments were identified, and restriction map of one of the heavy chain gene fragments was determined. Then heavy chain Ig gene fragments were subcloned into a targeting vector. The resulting construct was introduced into embryonic stem cells. Antibiotic selection of transfected cells is under the progress. Conclusion: Generation of xenomouse is particularly important in medical biotechnology. However, this goal is not easily achieved due to the technical difficulties as well as huge financial expenses. Although we are in the early stage of a long-term project, our results, at least, partially contribute the successful generation of humanized xenomouse in Korea.

암세포 내로의 약물 전달 증진 목적의 신규 소마토스타틴 수용체 타겟리간드 합성 및 평가 (Synthesis and Evaluation of a Ligand Targeting the Somatostatin Receptor for Drug Delivery to Tumor Cell)

  • 최선주;홍영돈;이소영;정성희
    • 방사선산업학회지
    • /
    • 제9권4호
    • /
    • pp.193-198
    • /
    • 2015
  • Most of targeted therapies block the action of certain enzymes, proteins, or other molecules involved in the growth and spread of cancer cells to produce its cytotoxic effect. Either small molecule drugs or monoclonal antibodies are mostly used in targeted therapies. Unfortunately, targeted therapy has a certain degree of unwanted side effect like other cytotoxicity inducing chemotherapies. To overcome and to reduce unwanted side effects during a cancer therapy, recently radiopeptide therapies has got the worlds' attraction for the tumor targeting modalities due to its beneficial effect on less side effect compared to cytotoxic chemotherapies. Among radiopeptide therapies, $^{177}Lu$-DOTATATE is a major modality as an effective one invented so far in treating neuroendocrine tumor (NET) and it has been in clinical trials at least one decade. Although it does have rather effective therapeutic effect on NET, it has less effective in rather large solid tumor. There are many ways to improve or increase therapeutic effect of radiopeptide are a finding the potent small molecules to target the tumor site selectively, or a labeling with radioisotope of emitting high energy, or an improving its biological half-life by introducing different moieties to increase lipophilicity. Present study was focus to increase a biological half-life of radio somatostatin which will target the somatostatin receptor by altering the bifunctional chelator (BFCA) by introducing lipophilic moiety to the somatostatin, which would make the labeled peptide stay longer in the tumor site and thus it can intensify the therapeutic effect on tumor cell itself and around tissues.

Targeting cell surface glucose-regulated protein 94 in gastric cancer with an anti-GRP94 human monoclonal antibody

  • Hyun Jung Kim;Yea Bin Cho;Kyun Heo;Ji Woong Kim;Ha Gyeong Shin;Eun-bi Lee;Seong-Min Park;Jong Bae Park;Sukmook Lee
    • BMB Reports
    • /
    • 제57권4호
    • /
    • pp.188-193
    • /
    • 2024
  • Gastric cancer (GC), a leading cause of cancer-related mortality, remains a significant challenge despite recent therapeutic advancements. In this study, we explore the potential of targeting cell surface glucose-regulated protein 94 (GRP94) with antibodies as a novel therapeutic approach for GC. Our comprehensive analysis of GRP94 expression across various cancer types, with a specific focus on GC, revealed a substantial overexpression of GRP94, highlighting its potential as a promising target. Through in vitro and in vivo efficacy assessments, as well as toxicological analyses, we found that K101.1, a fully human monoclonal antibody designed to specifically target cell surface GRP94, effectively inhibits GC growth and angiogenesis without causing in vivo toxicity. Furthermore, our findings indicate that K101.1 promotes the internalization and concurrent downregulation of cell surface GRP94 on GC cells. In conclusion, our study suggests that cell surface GRP94 may be a potential therapeutic target in GC, and that antibody-based targeting of cell surface GRP94 may be an effective strategy for inhibiting GRP94-mediated GC growth and angiogenesis.

RNA Interference as a Plausible Anticancer Therapeutic Tool

  • Ramachandran, Puthucode Venkatakrishnan;Ignacimuthu, Savarimuthu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2445-2452
    • /
    • 2012
  • RNA interference has created a breakthrough in gene silencing technology and there is now much debate on the successful usage of RNAi based methods in treating a number of debilitating diseases. Cancer is often regarded as a result of mutations in genomic DNA resulting in faulty gene expression. The occurrence of cancer can also be influenced by epigenetic irregularities in the chromatin structure which leads to alterations and mutations in DNA resulting in cancer cell formation. A number of therapeutic approaches have been put forth to treat cancer. Anti cancer therapy often involves chemotherapy targeting all the cells in common, whereby both cancer cells as well as normal cells get affected. Hence RNAi technology has potential to be a better therapeutic agent as it is possible to deactivate molecular targets like specific mutant genes. This review highlights the successful use of RNAi inducers against different types of cancer, thereby paving the way for specific therapeutic medicines.

Current understanding of cancer-intrinsic PD-L1: regulation of expression and its protumoral activity

  • Yadollahi, Pedram;Jeon, You-Kyoung;Ng, Wooi Loon;Choi, Inhak
    • BMB Reports
    • /
    • 제54권1호
    • /
    • pp.12-20
    • /
    • 2021
  • In the last decade, we have witnessed an unprecedented clinical success in cancer immunotherapies targeting the programmed cell-death ligand 1 (PD-L1) and programmed cell-death 1 (PD-1) pathway. Besides the fact that PD-L1 plays a key role in immune regulation in tumor microenvironment, recently a plethora of reports has suggested a new perspective of non-immunological functions of PD-L1 in the regulation of cancer intrinsic activities including mesenchymal transition, glucose and lipid metabolism, stemness, and autophagy. Here we review the current understanding on the regulation of expression and intrinsic protumoral activity of cancer-intrinsic PD-L1.

Multiplexed targeting of microRNA in stem cell-derived extracellular vesicles for regenerative medicine

  • Song, Byeong-Wook;Oh, Sekyung;Chang, Woochul
    • BMB Reports
    • /
    • 제55권2호
    • /
    • pp.65-71
    • /
    • 2022
  • Regenerative medicine is a research field that develops methods to restore damaged cell or tissue function by regeneration, repair or replacement. Stem cells are the raw material of the body that is ultimately used from the point of view of regenerative medicine, and stem cell therapy uses cells themselves or their derivatives to promote responses to diseases and dysfunctions, the ultimate goal of regenerative medicine. Stem cell-derived extracellular vesicles (EVs) are recognized as an attractive source because they can enrich exogenous microRNAs (miRNAs) by targeting pathological recipient cells for disease therapy and can overcome the obstacles faced by current cell therapy agents. However, there are some limitations that need to be addressed before using miRNA-enriched EVs derived from stem cells for multiplexed therapeutic targeting in many diseases. Here, we review various roles on miRNA-based stem cell EVs that can induce effective and stable functional improvement of stem cell-derived EVs. In addition, we introduce and review the implications of several miRNA-enriched EV therapies improved by multiplexed targeting in diseases involving the circulatory system and nervous system. This systemic review may offer potential roles for stem cell-derived therapeutics with multiplexed targeting.

Cancer Metabolism: Strategic Diversion from Targeting Cancer Drivers to Targeting Cancer Suppliers

  • Kim, Soo-Youl
    • Biomolecules & Therapeutics
    • /
    • 제23권2호
    • /
    • pp.99-109
    • /
    • 2015
  • Drug development groups are close to discovering another pot of gold-a therapeutic target-similar to the success of imatinib (Gleevec) in the field of cancer biology. Modern molecular biology has improved cancer therapy through the identification of more pharmaceutically viable targets, and yet major problems and risks associated with late-phase cancer therapy remain. Presently, a growing number of reports have initiated a discussion about the benefits of metabolic regulation in cancers. The Warburg effect, a great discovery approximately 70 years ago, addresses the "universality" of cancer characteristics. For instance, most cancer cells prefer aerobic glycolysis instead of mitochondrial respiration. Recently, cancer metabolism has been explained not only by metabolites but also through modern molecular and chemical biological techniques. Scientists are seeking context-dependent universality among cancer types according to metabolic and enzymatic pathway signatures. This review presents current cancer metabolism studies and discusses future directions in cancer therapy targeting bio-energetics, bio-anabolism, and autophagy, emphasizing the important contribution of cancer metabolism in cancer therapy.

적혈구를 이용한 약물 수송 (Erythrocyte as Drug Carrier)

  • 용철순;박경아
    • Journal of Pharmaceutical Investigation
    • /
    • 제22권1호
    • /
    • pp.1-10
    • /
    • 1992
  • The use of erythrocyte as drug carrier has been reviewed, Carrier erythrocytes have proven to offer many advantages for delivery of therapeutic agents, especially in the treatment of inherited enzyme deficiency and cancer. Carrier erythrocytes are biodegradable and nonimmunogenic. Encapsulated drugs may be protected from premature degradation, inactivation and excretion. Carrier erythrocytes may be used as a slow-release system. Targeting of encapsulated drugs directly to a site of action is another possibility. Methods for encapsulating drugs into erythrocytes, the fate of carrier erythrocytes in vivo, the strategies of targeting carrier erythrocytes to special organs and in vivo applications of erythrocytes have been discussed. The encapsulation of drugs in erythrocytes has shown attractive possibilites in future use.

  • PDF

Tailored Biologics Selection in Severe Asthma

  • Sang Hyuk Kim;Youlim Kim
    • Tuberculosis and Respiratory Diseases
    • /
    • 제87권1호
    • /
    • pp.12-21
    • /
    • 2024
  • The management of severe asthma presents a significant challenge in asthma treatment. Over the past few decades, remarkable progress has been made in developing new treatments for severe asthma, primarily in the form of biological agents. These advances have been made possible through a deeper understanding of the underlying pathogenesis of asthma. Most biological agents focus on targeting specific inflammatory pathways known as type 2 inflammation. However, recent developments have introduced a new agent targeting upstream alarmin signaling pathways. This opens up new possibilities, and it is anticipated that additional therapeutic agents targeting various pathways will be developed in the future. Despite this recent progress, the mainstay of asthma treatment has long been inhalers. As a result, the guidelines for the appropriate use of biological agents are not yet firmly established. In this review, we aim to emphasize the current state of biological therapy for severe asthma and provide insights into its future prospects.