Browse > Article
http://dx.doi.org/10.5483/BMBRep.2021.54.1.241

Current understanding of cancer-intrinsic PD-L1: regulation of expression and its protumoral activity  

Yadollahi, Pedram (Innovative Therapeutic Research Institute, Inje University)
Jeon, You-Kyoung (Innovative Therapeutic Research Institute, Inje University)
Ng, Wooi Loon (Innovative Therapeutic Research Institute, Inje University)
Choi, Inhak (Innovative Therapeutic Research Institute, Inje University)
Publication Information
BMB Reports / v.54, no.1, 2021 , pp. 12-20 More about this Journal
Abstract
In the last decade, we have witnessed an unprecedented clinical success in cancer immunotherapies targeting the programmed cell-death ligand 1 (PD-L1) and programmed cell-death 1 (PD-1) pathway. Besides the fact that PD-L1 plays a key role in immune regulation in tumor microenvironment, recently a plethora of reports has suggested a new perspective of non-immunological functions of PD-L1 in the regulation of cancer intrinsic activities including mesenchymal transition, glucose and lipid metabolism, stemness, and autophagy. Here we review the current understanding on the regulation of expression and intrinsic protumoral activity of cancer-intrinsic PD-L1.
Keywords
Cancer-intrinsic PD-L1; Protumoral activity; Regulation of expression; Signaling pathway; Signalosome;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chang CH, Qiu J, O'Sullivan D et al (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229-1241   DOI
2 Wang S, Li J, Xie J et al (2018) Programmed death ligand 1 promotes lymph node metastasis and glucose metabolism in cervical cancer by activating integrin beta4/SNAI1/SIRT3 signaling pathway. Oncogene 37, 4164-4180   DOI
3 Kim S, Jang JY, Koh J et al (2019) Programmed cell death ligand-1-mediated enhancement of hexokinase 2 expression is inversely related to T-cell effector gene expression in non-small-cell lung cancer. J Exp Clin Cancer Res 38, 462   DOI
4 Lin R, Zhang H, Yuan Y et al (2020) Fatty acid oxidation controls CD8(+) tissue-resident memory T-cell survival in gastric adenocarcinoma. Cancer Immunol Res 8, 479-492   DOI
5 Najafi M, Farhood B and Mortezaee K (2019) Cancer stem cells (CSCs) in cancer progression and therapy. J Cell Physiol 234, 8381-8395   DOI
6 Tamai K, Nakamura M, Mizuma M et al (2014) Suppressive expression of CD274 increases tumorigenesis and cancer stem cell phenotypes in cholangiocarcinoma. Cancer Sci 105, 667-674   DOI
7 Jinesh GG, Manyam GC, Mmeje CO, Baggerly KA and Kamat AM (2017) Surface PD-L1, E-cadherin, CD24, and VEGFR2 as markers of epithelial cancer stem cells associated with rapid tumorigenesis. Sci Rep 7, 9602   DOI
8 Wu Y, Chen M, Wu P, Chen C, Xu ZP and Gu W (2017) Increased PD-L1 expression in breast and colon cancer stem cells. Clin Exp Pharmacol Physiol 44, 602-604   DOI
9 Almozyan S, Colak D, Mansour F et al (2017) PD-L1 promotes OCT4 and Nanog expression in breast cancer stem cells by sustaining PI3K/AKT pathway activation. Int J Cancer 141, 1402-1412   DOI
10 Zhang X, Li F, Zheng Y et al (2019) Propofol reduced mammosphere formation of breast cancer stem cells via PD-L1/Nanog in vitro. Oxid Med Cell Longev 2019, 9078209   DOI
11 Wei F, Zhang T, Deng SC et al (2019) PD-L1 promotes colorectal cancer stem cell expansion by activating HMGA1-dependent signaling pathways. Cancer Lett 450, 1-13   DOI
12 Ishibashi M, Tamura H, Sunakawa M et al (2016) Myeloma drug resistance induced by binding of myeloma B7-H1 (PD-L1) to PD-1. Cancer Immunol Res 4, 779-788   DOI
13 Black M, Barsoum IB, Truesdell P et al (2016) Activation of the PD-1/PD-L1 immune checkpoint confers tumor cell chemoresistance associated with increased metastasis. Oncotarget 7, 10557-10567   DOI
14 Liu S, Chen S, Yuan W et al (2017) PD-1/PD-L1 interaction up-regulates MDR1/P-gp expression in breast cancer cells via PI3K/AKT and MAPK/ERK pathways. Oncotarget 8, 99901-99912   DOI
15 Feng D, Qin B, Pal K et al (2019) BRAF(V600E)-induced, tumor intrinsic PD-L1 can regulate chemotherapy-induced apoptosis in human colon cancer cells and in tumor xenografts. Oncogene 38, 6752-6766   DOI
16 Tu X, Qin B, Zhang Y et al (2019) PD-L1 (B7-H1) Competes with the RNA exosome to regulate the DNA damage response and can be targeted to sensitize to radiation or chemotherapy. Mol Cell 74, 1215-1226 e1214   DOI
17 Gao H, Zhang J and Ren X (2019) PD-L1 regulates tumorigenesis and autophagy of ovarian cancer by activating mTORC signaling. Biosci Rep 39, BSR20191041   DOI
18 Brech A, Ahlquist T, Lothe RA and Stenmark H (2009) Autophagy in tumour suppression and promotion. Mol Oncol 3, 366-375   DOI
19 Clark CA, Gupta HB and Curiel TJ (2017) Tumor cell-intrinsic CD274/PD-L1: a novel metabolic balancing act with clinical potential. Autophagy 13, 987-988   DOI
20 Chen RQ, Xu XH, Liu F et al (2019) The binding of PD-L1 and Akt facilitates glioma cell invasion upon starvation via Akt/Autophagy/F-Actin signaling. Front Oncol 9, 1347   DOI
21 Huttlin EL, Ting L, Bruckner RJ et al (2015) The BioPlex network: a systematic exploration of the human interactome. Cell 162, 425-440   DOI
22 Escors D, Gato-Canas M, Zuazo M et al (2018) The intracellular signalosome of PD-L1 in cancer cells. Signal Transduct Target Ther 3, 26   DOI
23 Cancer Genome Atlas Research Network (2017) Integrated genomic and molecular characterization of cervical cancer. Nature 543, 378-384   DOI
24 Chen L and Flies DB (2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13, 227-242   DOI
25 Cai J, Wang D, Zhang G and Guo X (2019) The role of PD-1/PD-L1 axis in treg development and function: implications for cancer immunotherapy. Onco Targets Ther 12, 8437-8445   DOI
26 Xin Yu J, Hodge JP, Oliva C, Neftelinov ST, HubbardLucey VM and Tang J (2020) Trends in clinical development for PD-1/PD-L1 inhibitors. Nat Rev Drug Discov 19, 163-164   DOI
27 Sun L, Zhang L, Yu J et al (2020) Clinical efficacy and safety of anti-PD-1/PD-L1 inhibitors for the treatment of advanced or metastatic cancer: a systematic review and meta-analysis. Sci Rep 10, 2083   DOI
28 Azuma T, Yao S, Zhu G, Flies AS, Flies SJ and Chen L (2008) B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood 111, 3635-3643   DOI
29 Yu W, Hua Y, Qiu H et al (2020) PD-L1 promotes tumor growth and progression by activating WIP and beta-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death Dis 11, 506   DOI
30 Lee S-J, Jang B-C, Lee S-W et al (2006) Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-γ-induced upregulation of B7-H1 (CD274). FEBS Lett 580, 755-762   DOI
31 Steidl C, Shah SP, Woolcock BW et al (2011) MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471, 377-381   DOI
32 Kataoka K, Shiraishi Y, Takeda Y et al (2016) Aberrant PD-L1 expression through 3'-UTR disruption in multiple cancers. Nature 534, 402-406   DOI
33 Wu Y, Zhao T, Jia Z et al (2019) Polymorphism of the programmed death‐ligand 1 gene is associated with its protein expression and prognosis in gastric cancer. J Gastroenterol Hepatol 34, 1201-1207   DOI
34 Green MR, Rodig S, Juszczynski P et al (2012) Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res 18, 1611-1618   DOI
35 Xiao G, Jin L-L, Liu C-Q et al (2019) EZH2 negatively regulates PD-L1 expression in hepatocellular carcinoma. J Immunother Cancer 7, 1-15   DOI
36 Nair VS, El Salhat H, Taha RZ, John A, Ali BR and Elkord E (2018) DNA methylation and repressive H3K9 and H3K27 trimethylation in the promoter regions of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, and PD-L1 genes in human primary breast cancer. Clin Epigenetics 10, 78   DOI
37 Casey SC, Tong L, Li Y et al (2016) MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352, 227-231   DOI
38 Song TL, Nairismagi M-L, Laurensia Y et al (2018) Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma. Blood 132, 1146-1158
39 Ruf M, Moch H and Schraml P (2016) PD-L1 expression is regulated by hypoxia inducible factor in clear cell renal cell carcinoma. Int J Cancer 139, 396-403   DOI
40 Noman MZ, Desantis G, Janji B et al (2014) PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211, 781-790   DOI
41 Liu J, Hamrouni A, Wolowiec D et al (2007) Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-γ and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 110, 296-304
42 Stutvoet TS, Kol A, de Vries EG et al (2019) MAPK pathway activity plays a key role in PD‐L1 expression of lung adenocarcinoma cells. J Pathol 249, 52-64   DOI
43 Coelho MA, de Carne Trecesson S, Rana S et al (2017) Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity 47, 1083-1099   DOI
44 Lu C, Paschall AV, Shi H et al (2017) The MLL1-H3K4me3 axis-mediated PD-L1 expression and pancreatic cancer immune evasion. J Natl Cancer Inst 109, djw283   DOI
45 Hong S, Chen N, Fang W et al (2016) Upregulation of PD-L1 by EML4-ALK fusion protein mediates the immune escape in ALK positive NSCLC: implication for optional anti-PD-1/PD-L1 immune therapy for ALK-TKIs sensitive and resistant NSCLC patients. Oncoimmunology 5, e1094598   DOI
46 van Rensburg HJJ, Azad T, Ling M et al (2018) The Hippo pathway component TAZ promotes immune evasion in human cancer through PD-L1. Cancer Res 78, 1457-1470   DOI
47 Chen J, Zhang XD and Proud C (2015) Dissecting the signaling pathways that mediate cancer in PTEN and LKB1 double-knockout mice. Sci Signal 8, pe1   DOI
48 Xu Y-p, Lv L, Liu Y et al (2019) Tumor suppressor TET2 promotes cancer immunity and immunotherapy efficacy. J Clin Invest 129, 4316-4331   DOI
49 Thiem A, Hesbacher S, Kneitz H et al (2019) IFN-gammainduced PD-L1 expression in melanoma depends on p53 expression. J Exp Clin Cancer Res 38, 1-15   DOI
50 Cortez MA, Ivan C, Valdecanas D et al (2016) PDL1 regulation by p53 via miR-34. J Natl Cancer Inst 108, djv303
51 Wu A, Wu Q, Deng Y et al (2019) Loss of VGLL 4 suppresses tumor PD‐L1 expression and immune evasion. EMBO J 38, e99506
52 Yan Y, Zheng L, Du Q, Yan B and Geller DA (2020) Interferon regulatory factor 1 (IRF-1) and IRF-2 regulate PD-L1 expression in hepatocellular carcinoma (HCC) cells. Cancer Immunol Immunother 69, 891-1903
53 Dorand RD, Nthale J, Myers JT et al (2016) Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity. Science 353, 399-403   DOI
54 Chen L, Liu S and Tao Y (2020) Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther 5, 90   DOI
55 Wei S, Wang K, Huang X, Zhao Z and Zhao Z (2019) LncRNA MALAT1 contributes to non-small cell lung cancer progression via modulating miR-200a-3p/programmed deathligand 1 axis. Int J Immunopathol Pharmacol 33, 2058738419859699
56 Zhao L, Liu Y, Zhang J, Liu Y and Qi Q (2019) LncRNA SNHG14/miR-5590-3p/ZEB1 positive feedback loop promoted diffuse large B cell lymphoma progression and immune evasion through regulating PD-1/PD-L1 checkpoint. Cell Death Dis 10, 1-15   DOI
57 Mineo M, Lyons SM, Zdioruk M et al (2020) Tumor interferon signaling is regulated by a lncRNA INCR1 transcribed from the PD-L1 Locus. Mol Cell 78, 1209-1223
58 Apriamashvili G, Vredevoogd DW, Krijgsman O et al (2020) Loss of ubiquitin ligase STUB1 amplifies IFNγ-R1/JAK1 signaling and sensitizes tumors to IFNγ. bioRxiv, https://doi.org/10.1101/2020.07.07.191650   DOI
59 Li CW, Lim SO, Xia W et al (2016) Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun 7, 12632   DOI
60 Chan LC, Li CW, Xia W et al (2019) IL-6/JAK1 pathway drives PD-L1 Y112 phosphorylation to promote cancer immune evasion. J Clin Invest 129, 3324-3338   DOI
61 Mezzadra R, Sun C, Jae LT et al (2017) Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature 549, 106-110   DOI
62 Burr ML, Sparbier CE, Chan Y-C et al (2017) CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 549, 101-105   DOI
63 Lim SO, Li CW, Xia W et al (2016) Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell 30, 925-939   DOI
64 Zhang J, Bu X, Wang H et al (2019) Author correction: cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 571, E10   DOI
65 Zhang M, Wang N, Song P et al (2020) LncRNA GATA3- AS1 facilitates tumour progression and immune escape in triple-negative breast cancer through destabilization of GATA3 but stabilization of PD-L1. Cell Prolif 53, e12855   DOI
66 Gato-Canas M, Zuazo M, Arasanz H et al (2017) PDL1 signals through conserved sequence motifs to overcome interferon-mediated cytotoxicity. Cell Rep 20, 1818-1829   DOI
67 Dongre A and Weinberg RA (2019) New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 20, 69-84   DOI
68 Qiu XY, Hu DX, Chen WQ et al (2018) PD-L1 confers glioblastoma multiforme malignancy via Ras binding and Ras/Erk/EMT activation. Biochim Biophys Acta Mol Basis Dis 1864, 1754-1769   DOI
69 Cao Y, Zhang L, Kamimura Y et al (2011) B7-H1 overexpression regulates epithelial-mesenchymal transition and accelerates carcinogenesis in skin. Cancer Res 71, 1235-1243   DOI
70 Wang Y, Wang H, Zhao Q, Xia Y, Hu X and Guo J (2015) PD-L1 induces epithelial-to-mesenchymal transition via activating SREBP-1c in renal cell carcinoma. Med Oncol 32, 212   DOI
71 Cui P, Jing P, Liu X and Xu W (2020) Prognostic significance of PD-L1 expression and its tumor-intrinsic functions in hypopharyngeal squamous cell carcinoma. Cancer Manag Res 12, 5893-5902   DOI
72 Fei Z, Deng Z, Zhou L, Li K, Xia X and Xie R (2019) PD-L1 induces epithelial-mesenchymal transition in nasopharyngeal carcinoma cells through activation of the PI3K/AKT Pathway. Oncol Res 27, 801-807   DOI
73 Zhang Y, Zeng Y, Liu T et al (2019) The canonical TGF-beta/Smad signalling pathway is involved in PD-L1-induced primary resistance to EGFR-TKIs in EGFR-mutant non-small-cell lung cancer. Respir Res 20, 164   DOI
74 Xu J, Meng Q, Li X et al (2019) Long noncoding RNA MIR17HG promotes colorectal cancer progression via miR17-5p. Cancer Res 79, 4882-4895   DOI
75 Clark CA, Gupta HB, Sareddy G et al (2016) Tumor-intrinsic PD-L1 signals regulate cell growth, pathogenesis, and autophagy in ovarian cancer and melanoma. Cancer Res 76, 6964-6974   DOI
76 Martinez-Outschoorn UE, Peiris-Pages M, Pestell RG, Sotgia F and Lisanti MP (2017) Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol 14, 11-31   DOI