• Title/Summary/Keyword: therapeutic potential

Search Result 2,225, Processing Time 0.022 seconds

Therapeutic Potential of Chinese Prescription Hachimi-Jio-Gan and Its Crude Drug Corni Fructus against Diabetic Nephropathy (중국처방전 팔미지황환과 구성생약인 산수유의 당뇨병성 신증에 대한 보호 효과)

  • Park, Chan Hum;Choi, Jae Sue;Yokozawa, Takako
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.3
    • /
    • pp.165-174
    • /
    • 2017
  • Background: Traditional plant drugs, are less toxic and free from side effects compared to general synthetic drugs. They have been used for the treatment of diabetes and associated renal damage. In this study, we evaluated effect of Hachimi-jio-gan against diabetic renal damage in a rat model of type 1 diabetic nephropathy induced by subtotal nephrectomy plus streptozotocin (STZ) injection, and in Otsuka Long-Evans Tokushima Fatty (OLETF) rats and db/db mice as a model of human type 2 diabetes, and its associated complications. To explore the active components of Hachimi-jio-gan, the antidiabetic effect of corni fructus, a consituent of Hachimi-jio-gan, and 7-O-galloyl-${{\small}D}$-sedoheptulose, a phenolic compound isolated from corni fructus, were investigated. Methods and Results: We conducted an extensive literature search, and all required data were collected and systematically organized. The findings were reviewed and categorized based on relevance to the topic. A summary of all the therapeutic effects were reported as figures and tables. Conclusions: Hachimi-jio-gan serves as a potential therapeutic agent to against the development of type 1 and type 2 diabetic nephropathy. From the results of characterization active components of corni fructus, 7-O-galloyl-${\small}D$-sedoheptulose is considered to play an important role in preventing and/or delaying the onset of diabetic renal damage. 7-O-Galloyl-${\small}D$-sedoheptulose is expected to serve as a novel therapeutic agent against the development of diabetic nephropathy.

Therapeutic Effect of Majoon Mundi and Qairooti Karnab in Dā al-Ṣadaf (Psoriasis): A Case Series

  • Siddiqui, Gulnaz Fatima;Siddiqui, Shahid Akhtar;Jabeen, Arzeena;Qamaruddin, Qamaruddin;Kazmi, Munawwar Husain
    • CELLMED
    • /
    • v.9 no.4
    • /
    • pp.8.1-8.5
    • /
    • 2019
  • Introduction: Psoriasis is a major health concern around the world. Physicians of the Unani system of medicine have been treating psoriasis for centuries. Aim: The purpose of our study was to assess the effect of Majoon Mundi (a semisolid Unani medication intended for oral intake used as blood purifier) and Qairooti Karnab (a Unani medication in paste form intended for topical application used as emollient) in the treatment $na{\ddot{i}}ve$ psoriasis cases and to collect data to warrant further clinical trials. Material and Methods: Psoriasis cases were diagnosed clinically. Data were collected during treatment of five patients of psoriasis treated with the Majoon Mundi (oral intake of 5 gm twice daily with 200 ml of water for 12 weeks) and Qairooti Karnab (topical application on affected sites twice a day for 12 weeks). Patients were treated for 12 weeks. Treatment response was seen with clinical improvement in skin lesions and measurement of Psoriasis Area and Severity Index (PASI Scoring) before and after treatment. Results: Reduced PASI Score was observed in all five patients after 12 weeks of treatment [PASI before and after treatment was (mean${\pm}$SD) $20.7{\pm}4.6$ vs. $3.2{\pm}1.8$; p-value <0.05.]. Clinical improvement was noticed within an average of 4 weeks of treatment. Conclusion: Preliminary findings indicate the potential therapeutic role of Majoon Mundi and Qairooti Karnab in the treatment of psoriasis. Clinical trials based on this Unani pharmacopeial formulation should be conducted to explore the therapeutic potential of this formulation in psoriasis

Potential Benefits of a Selective Region High-frequency Diathermy with Therapeutic Exercises on Older Persons with Degenerative Knee Osteoarthritis: A Case Report

  • Ha, Sin Ho;Lee, Dong Geon;Hong, Soung Kyun;Lee, Gyu Chang
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.4
    • /
    • pp.387-397
    • /
    • 2021
  • Objective: The purpose of this case study was to investigate selective region high-frequency diathermy at trigger points with therapeutic exercises on pain, function, balance and gait in older patients with degenerative knee osteoarthritis (DKO). Design: A case report. Methods: The patient who participated in this study was a 71-year-old woman, who had been diagnosed with moderate osteoarthritis with grade II Kellgren & Lawrence grading scale. The intervention consisted of selective region high-frequency diathermy at trigger points, with hip and knee stretching and strengthening exercises. The participant was given assessments before and after every intervention session using the Visual Analogue Scale (VAS), Western Ontario and McMaster Universities Arthritis Index (WOMAC), the Timed Up and Go test (TUG) and the 10 Meter Walk Test (10MWT). The participant performed the intervention 18 times for a total of 30 minutes each. Results: As a result of this study, the patient VAS decreased to 3 points, and the WOMAC decreased to 53 points. In addition, the TUG decreased to 3.25 s and the 10MWT decreased to 1.14 s. Conclusions: The results of this study suggest that selective region high-frequency diathermy at trigger points with therapeutic exercises may be an effective intervention to decrease pain, improve knee function, balance and gait in patients with DKO. The selective region high-frequency diathermy with therapeutic exercises may be feasible and provide potential benefits for rehabilitation of DKO.

Production of Recombinant Anti-Cancer Vaccines in Plants

  • Lee, Jeong Hwan;Ko, Kisung
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.345-353
    • /
    • 2017
  • Plant expression systems have been developed to produce anti-cancer vaccines. Plants have several advantages as bioreactors for the production of subunit vaccines: they are considered safe, and may be used to produce recombinant proteins at low production cost. However, several technical issues hinder large-scale production of anti-cancer vaccines in plants. The present review covers design strategies to enhance the immunogenicity and therapeutic potency of anti-cancer vaccines, methods to increase vaccine-expressing plant biomass, and challenges facing the production of anti-cancer vaccines in plants. Specifically, the issues such as low expression levels and plant-specific glycosylation are described, along with their potential solutions.

Anticancer Therapy for Breast Cancer Patients with Skin Metastases Refractory to Conventional Treatments

  • Varol, Umut;Yildiz, Ibrahim;Alacacioglu, Ahmet;Uslu, Ruchan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1885-1887
    • /
    • 2014
  • Skin metastases of breast cancer are usually late events in the course of tumor progression and signify a poor prognosis. They may remain as a therapeutic challenge especially after failure of standard treatments. Topical interventions, together with or without radiotherapy, may only palliate the symptoms temporarily. However, there may be alternative treatment modalities for unresectable breast cancer skin metastases resistant to chemotherapy and radiotherapy. There are various genetic alterations in tumors and therapeutic potential of expression patterns for factors like epidermal growth factor receptor may have important clinical implications in case of disease refractory to the conventional treatments. Here, we clarified the therapeutic options and genetic alterations in skin metastatic breast cancer patients refractory to standard chemotherapeutics.

γ-Irradiation Induced Adhesion Molecules are Reduced by Vitamin C in Human Endothelial Cells

  • Son, Eun-Wha;Kim, Byung-Oh;Pyo, Suh-Kneung
    • Biomolecules & Therapeutics
    • /
    • v.12 no.3
    • /
    • pp.145-150
    • /
    • 2004
  • Inflammation is a frequent radiation-induced reaction following therapeutic irradiation. Treatment of human umbilical endothelial cells (HUVEC) with ${\gamma}$-irradiation (${\gamma}$IR) induces the expression of adhesion proteins such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. Since the upregulation of these proteins on endothelial cell Surface has been known to be associated with inflammation, interfering with the expression of adhesion molecules is an important therapeutic target. In the present study, we demonstrate that vitamin C inhibits ${\gamma}$IR induced expression of ICAM-1, VCAM-1, and E-selectin on HUVEC in a dose- and time dependent manner. Vitamin C a1so inhibited the production of Nitric oxide (NO) induced by ${\gamma}$IR. These data suggest that vitamin C has therapeutic potential for the treatment of various inflammatory disorder associated with an increase of endothelial leukocyte adhesion molecules.

Therapeutic Potential of Medicinal Plants and Their Constituents on Lung Inflammatory Disorders

  • Kim, Hyun Pyo;Lim, Hyun;Kwon, Yong Soo
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.91-104
    • /
    • 2017
  • Acute bronchitis and chronic obstructive pulmonary diseases (COPD) are essentially lung inflammatory disorders. Various plant extracts and their constituents showed therapeutic effects on several animal models of lung inflammation. These include coumarins, flavonoids, phenolics, iridoids, monoterpenes, diterpenes and triterpenoids. Some of them exerted inhibitory action mainly by inhibiting the mitogen-activated protein kinase pathway and nuclear transcription $factor-{\kappa}B$ activation. Especially, many flavonoid derivatives distinctly showed effectiveness on lung inflammation. In this review, the experimental data for plant extracts and their constituents showing therapeutic effectiveness on animal models of lung inflammation are summarized.

Galanin's implications for post-stroke improvement

  • Song, Juhyun;Kim, Oh Yoen
    • Anatomy and Cell Biology
    • /
    • v.49 no.4
    • /
    • pp.223-230
    • /
    • 2016
  • Stroke leads to a variety of pathophysiological conditions such as ischemic infarct, cerebral inflammation, neuronal damage, cognitive decline, and depression. Many endeavors have been tried to find the therapeutic solutions to attenuate severe neuropathogenesis after stroke. Several studies have reported that a decrease in the neuropeptide regulator 'galanin' is associated with neuronal loss, learning and memory dysfunctions, and depression following a stroke. The present review summarized recent evidences on the function and the therapeutic potential of galanin in post-ischemic stroke to provide a further understanding of galanin's role. Hence, we suggest that galanin needs to be considered as a therapeutic factor in the alleviation of post-stroke pathologies.

IL-17 and IL-21: Their Immunobiology and Therapeutic Potentials

  • Choong-Hyun Koh;Byung-Seok Kim;Chang-Yuil Kang;Yeonseok Chung;Hyungseok Seo
    • IMMUNE NETWORK
    • /
    • v.24 no.1
    • /
    • pp.2.1-2.24
    • /
    • 2024
  • Studies over the last 2 decades have identified IL-17 and IL-21 as key cytokines in the modulation of a wide range of immune responses. IL-17 serves as a critical defender against bacterial and fungal pathogens, while maintaining symbiotic relationships with commensal microbiota. However, alterations in its levels can lead to chronic inflammation and autoimmunity. IL-21, on the other hand, bridges the adaptive and innate immune responses, and its imbalance is implicated in autoimmune diseases and cancer, highlighting its important role in both health and disease. Delving into the intricacies of these cytokines not only opens new avenues for understanding the immune system, but also promises innovative advances in the development of therapeutic strategies for numerous diseases. In this review, we will discuss an updated view of the immunobiology and therapeutic potential of IL-17 and IL-21.

Understanding the Unfolded Protein Response (UPR) Pathway: Insights into Neuropsychiatric Disorders and Therapeutic Potentials

  • Pitna Kim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.183-191
    • /
    • 2024
  • The Unfolded Protein Response (UPR) serves as a critical cellular mechanism dedicated to maintaining protein homeostasis, primarily within the endoplasmic reticulum (ER). This pathway diligently responds to a variety of intracellular indicators of ER stress with the objective of reinstating balance by diminishing the accumulation of unfolded proteins, amplifying the ER's folding capacity, and eliminating slow-folding proteins. Prolonged ER stress and UPR irregularities have been linked to a range of neuropsychiatric disorders, including major depressive disorder, bipolar disorder, and schizophrenia. This review offers a comprehensive overview of the UPR pathway, delineating its activation mechanisms and its role in the pathophysiology of neuropsychiatric disorders. It highlights the intricate interplay within the UPR and its profound influence on brain function, synaptic perturbations, and neural developmental processes. Additionally, it explores evolving therapeutic strategies targeting the UPR within the context of these disorders, underscoring the necessity for precision and further research to effective treatments. The research findings presented in this work underscore the promising potential of UPR-focused therapeutic approaches to address the complex landscape of neuropsychiatric disorders, giving rise to optimism for improving outcomes for individuals facing these complex conditions.