• 제목/요약/키워드: therapeutic potential

Search Result 2,195, Processing Time 0.03 seconds

Neuroprotective effect of caffeic acid phenethyl ester in 3-nitropropionic acid-induced striatal neurotoxicity

  • Bak, Jia;Kim, Hee Jung;Kim, Seong Yun;Choi, Yun-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.3
    • /
    • pp.279-286
    • /
    • 2016
  • Caffeic acid phenethyl ester (CAPE), derived from honeybee hives, is a bioactive compound with strong antioxidant activity. This study was designed to test the neuroprotective effect of CAPE in 3-nitropropionic acid (3NP)-induced striatal neurotoxicity, a chemical model of Huntington's disease (HD). Initially, to test CAPE's antioxidant activity, a 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) antioxidant assay was employed, and CAPE showed a strong direct radical-scavenging effect. In addition, CAPE provided protection from 3NP-induced neuronal cell death in cultured striatal neurons. Based on these observations, the in vivo therapeutic potential of CAPE in 3NP-induced HD was tested. For this purpose, male C57BL/6 mice were repeatedly given 3NP to induce HD-like pathogenesis, and 30 mg/kg of CAPE or vehicle (5% dimethyl sulfoxide and 95% peanut oil) was administered daily. CAPE did not cause changes in body weight, but it reduced mortality by 29%. In addition, compared to the vehicle-treated group, robustly reduced striatal damage was observed in the CAPE-treated animals, and the 3NP-induced behavioral deficits on the rotarod test were significantly rescued after the CAPE treatment. Furthermore, immunohistochemical data showed that immunoreactivity to glial fibrillary acidic protein (GFAP) and CD45, markers for astrocyte and microglia activation, respectively, were strikingly reduced. Combined, these data unequivocally indicate that CAPE has a strong antioxidant effect and can be used as a potential therapeutic agent against HD.

Dust particles-induced intracellular Ca2+ signaling and reactive oxygen species in lung fibroblast cell line MRC5

  • Lee, Dong Un;Ji, Min Jeong;Kang, Jung Yun;Kyung, Sun Young;Hong, Jeong Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.327-334
    • /
    • 2017
  • Epidemiologic interest in particulate matter (PM) is growing particularly because of its impact of respiratory health. It has been elucidated that PM evoked inflammatory signal in pulmonary epithelia. However, it has not been established $Ca^{2+}$ signaling mechanisms involved in acute PM-derived signaling in pulmonary fibroblasts. In the present study, we explored dust particles PM modulated intracellular $Ca^{2+}$ signaling and sought to provide a therapeutic strategy by antagonizing PM-induced intracellular $Ca^{2+}$ signaling in human lung fibroblasts MRC5 cells. We demonstrated that PM10, less than $10{\mu}m$, induced intracellular $Ca^{2+}$ signaling, which was mediated by extracellular $Ca^{2+}$. The PM10-mediated intracellular $Ca^{2+}$ signaling was attenuated by antioxidants, phospholipase blockers, polyADPR polymerase 1 inhibitor, and transient receptor potential melastatin 2 (TRPM2) inhibitors. In addition, PM-mediated increases in reactive oxygen species were attenuated by TRPM2 blockers, clotrimazole (CLZ) and N-(p-amylcinnamoyl) anthranilic acid (ACA). Our results showed that PM10 enhanced reactive oxygen species signal by measuring DCF fluorescence and the DCF signal attenuated by both TRPM2 blockers CLZ and ACA. Here, we suggest functional inhibition of TRPM2 channels as a potential therapeutic strategy for modulation of dust particle-mediated signaling and oxidative stress accompanying lung diseases.

Establishment and Characterization of MTDH Knockdown by Artificial Micro RNA Interference - Functions as a Potential Tumor Suppressor in Breast Cancer

  • Wang, Song;Shu, Jie-Zhi;Cai, Yi;Bao, Zheng;Liang, Qing-Mo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2813-2818
    • /
    • 2012
  • Background: Considerable evidence suggests that metadherin (MTDH) is a potentially crucial mediator of tumor malignancy and an important therapeutic target for simultaneously enhancing chemotherapy efficacy and reducing metastasis risk. Inhibition of MTDH expression by RNA interference has been shown in several previous research, but silencing MTDH expression by microRNA (miRNA) interference in breast cancer has not been established. In the present study, we investigated the role of MTDH-miRNA in down-regulation of proliferation, motility and migration of breast carcinoma cells. Methods: Expression vectors of recombinant plasmids expressing artificial MTDH miRNA were constructed and transfected to knockdown MTDH expression in MDA-MB-231 breast cancer cells. Expression of MTDH mRNA and protein was detected by RT-PCR and Western blot, respectively. MTT assays were conducted to determine proliferation, and wound healing assays and transwell migration experiments for cell motility and migration. Results: Transfection of recombinant a plasmid of pcDNA-MTDH-miR-4 significantly suppressed the MTDH mRNA and protein levels more than 69% in MDA-MB-231 breast cancer cells. This knockdown significantly inhibited proliferation, motility and migration as compared with controls. Conclusions: MTDH-miRNA may play an important role in down-regulating proliferation, motility and migration in breast cancer cells, and should be considered as a potential small molecule inhibitor therapeutic targeting strategy for the future.

Cancer Cell Targeting with Mouse TERT-Specific Group I Intron of Tetrahymena thermophila

  • Ban, Gu-Yee;Song, Min-Sun;Lee, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.1070-1076
    • /
    • 2009
  • Telomerase reverse transcriptase (TERT), which prolongs the replicative life span of cells, is highly upregulated in 85-90% of human cancers, whereas most normal somatic tissues in humans express limited levels of the telomerase activity. Therefore, TERT has been a potential target for anticancer therapy. Recently, we described a new approach to human cancer gene therapy, which is based on the group I intron of Tetrahymena thermophila. This ribozyme can specifically mediate RNA replacement of human TERT (hTERT) transcript with a new transcript harboring anticancer activity through a trans-splicing reaction, resulting in selective regression of hTERT-positive cancer cells. However, to validate the therapeutic potential of the ribozyme in animal models, ribozymes targeting inherent transcripts of the animal should be developed. In this study, we developed a Tetrahymena-based trans-splicing ribozyme that can specifically target and replace the mouse TERT (mTERT) RNA. This ribozyme can trigger transgene activity not only also in mTERT-expressing cells but hTERT-positive cancer cells. Importantly, the ribozyme could selectively induce activity of the suicide gene, a herpes simplex virus thymidine kinase gene, in cancer cells expressing the TERT RNA and thereby specifically hamper the survival of these cells when treated with ganciclovir. The mTERT-targeting ribozyme will be useful for evaluation of the RNA replacement approach as a cancer gene therapeutic tool in the mouse model with syngeneic tumors.

Inhibitory effect of Mori Folium ethanol extract on pro-inflammatory mediator in lipopolysaccharide - activated RAW 264.7 cells (상엽(桑葉) 추출물의 LPS로 유도된 RAW 264.7 세포에서의 항염증 효과)

  • Park, Sang-Mi;Byun, Sung-Hui;Kim, Young-Woo;Cho, Il-Je;Kim, Sang-Chan
    • The Korea Journal of Herbology
    • /
    • v.27 no.3
    • /
    • pp.31-38
    • /
    • 2012
  • Objectives : Mori Folium is one of the traditional medicinal herb. It was commonly used for sericulture in the world and has been traditionally administered as natural therapeutic agent for the treatment of filariasis, diabetes and dropsy in East Asia. This study investigated an anti-inflammatory potential of Mori Folium ethanol extract (MFE). Methods : We examined the effects of MFE on the lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) in a murine macrophage cell line, RAW 264.7. Results : MFE inhibited production of NO and $PGE_2$ in a dose dependent manner and also decreased the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2, interleukin (IL)-1, IL-6 and tumor necrosis factor-${\alpha}$. As a plausible molecular mechanism, increased degradation of I-${\kappa}B{\alpha}$ and phosphorylation of I-${\kappa}B{\alpha}$, NF-${\kappa}B$ and MAP kinases by LPS were partly blocked by MFE treatment. Conclusions : These results suggest that MFE has an anti-inflammatory therapeutic potential, which may result from inhibition of NF-${\kappa}B$ activation and MAPK phosphorylation, thereby decreasing the expression of pro-inflammatory genes.

Towards the Application of Human Defensins as Antivirals

  • Park, Mee Sook;Kim, Jin Il;Lee, Ilseob;Park, Sehee;Bae, Joon-Yong;Park, Man-Seong
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.242-254
    • /
    • 2018
  • Defensins are antimicrobial peptides that participate in the innate immunity of hosts. Humans constitutively and/or inducibly express ${\alpha}$- and ${\beta}$-defensins, which are known for their antiviral and antibacterial activities. This review describes the application of human defensins. We discuss the extant experimental results, limited though they are, to consider the potential applicability of human defensins as antiviral agents. Given their antiviral effects, we propose that basic research be conducted on human defensins that focuses on RNA viruses, such as human immunodeficiency virus (HIV), influenza A virus (IAV), respiratory syncytial virus (RSV), and dengue virus (DENV), which are considered serious human pathogens but have posed huge challenges for vaccine development for different reasons. Concerning the prophylactic and therapeutic applications of defensins, we then discuss the applicability of human defensins as antivirals that has been demonstrated in reports using animal models. Finally, we discuss the potential adjuvant-like activity of human defensins and propose an exploration of the 'defensin vaccine' concept to prime the body with a controlled supply of human defensins. In sum, we suggest a conceptual framework to achieve the practical application of human defensins to combat viral infections.

Compound HRAS/PIK3CA Mutations in Chinese Patients with Alveolar Rhabdomyosarcomas

  • Liu, Chun-Xia;Li, Xiao-Ying;Li, Cheng-Fang;Chen, Yun-Zhao;Cui, Xiao-Bin;Hu, Jian-Ming;Li, Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1771-1774
    • /
    • 2014
  • The rhabdomyosarcoma (RMS) is the most common type of soft tissue tumor in children and adolescents; yet only a few screens for oncogenic mutations have been conducted for RMS. To identify novel mutations and potential therapeutic targets, we conducted a high-throughput Sequenom mass spectrometry-based analysis of 238 known mutations in 19 oncogenes in 17 primary formalin-fixed paraffin-embedded RMS tissue samples and two RMS cell lines. Mutations were detected in 31.6% (6 of 19) of the RMS specimens. Specifically, mutations in the NRAS gene were found in 27.3% (3 of 11) of embryonal RMS cases, while mutations in NRAS, HRAS, and PIK3CA genes were identified in 37.5% (3 of 8) of alveolar RMS (ARMS) cases; moreover, PIK3CA mutations were found in 25% (2 of 8) of ARMS specimens. The results demonstrate that tumor profiling in archival tissue samples is a useful tool for identifying diagnostic markers and potential therapeutic targets and suggests that these HRAS/ PIK3CA mutations play a critical role in the genesis of RMS.

Therapeutic Potential of Jeongjihwan for the Prevention and Treatment of Amnesia (정지환(定志丸)의 기억 및 인지기능 향상에 대한 효능 연구)

  • Jung, Tae-Young;Jeong, Won-Choon;Park, Jong-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.37-47
    • /
    • 2011
  • This study was aimed to investigate the memory enhancing effect of Jeongjihwan against scopolamine-induced amnesia in C57BL/6 mice. To determine the effect of Jeongjihwan on the memory and cognitive function, we have injected scopolamine (1 mg/kg, i.p.) into C57BL/6 mice 30 min before beginning of behavior tests. We have conducted Y-maze, Morris water-maze, passive avoidance and fear conditioning tests to compare learning and memory functions. Scopolamine-induced behavior changes of memory impairment were significantly restored by oral administration of Jeongjihwan (100 or 200 mg/kg/day). To elucidate the molecular mechanism underlying the memory enhancing effect of Jeongjihwan, we have examined the antioxidant defense system and neurotrophic factors. Jeongjihwan treatment attenuated intracellular accumulation of reactive oxygen species and up-regulated mRNA and protein expression of antioxidant enzymes as assessed by RT-PCR and western blot analysis, respectively. Jeongjihwan also increased protein levels of brain-derived neurotrophic factor (BDNF) compared with those in the scopolamine-treated group. Furthermore, as an upstream regulator, the activation of cAMP response element-binding protein (CREB) via phosphorylation was assessed by Western blot analysis. Jeongjihwan elevated the phosphorylation of CREB (p-CREB), which seemed to be mediated partly by extracellular signal-regulated kinase1/2 (ERK1/2) and protein kinase B/Akt. These findings suggest that Jeongjihwan may have preventive and therapeutic potential in the management of amnesia.

Virtual Screening Approaches in Identification of Bioactive Compounds Akin to Delphinidin as Potential HER2 Inhibitors for the Treatment of Breast Cancer

  • Patidar, Kavisha;Deshmukh, Aruna;Bandaru, Srinivas;Lakkaraju, Chandana;Girdhar, Amandeep;Gutlapalli, VR;Banerjee, Tushar;Nayarisseri, Anuraj;Singh, Sanjeev Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.2291-2295
    • /
    • 2016
  • Small molecule tyrosine kinase inhibitors targeting HER 2 receptors have emerged as an important therapeutic approach in inhibition of downstream proliferation and survival signals for the treatment of breast cancers. Recent drug discovery efforts have demonstrated that naturally occurring polyphenolic compounds like delphinidin have potential to inhibit proliferation and promote apoptosis of breast cancer cells by targeting HER2 receptors. While delphinidin may thus reduce tumour size, it is associated with serious side effects like dysphonia. Owing to the narrow therapeutic window of delphinidin, the present study aimed to identify high affinity compounds targeting HER2 with safer pharmacological profiles than delphinidin through virtual screening approaches. Delphinidin served as the query parent for identification of structurally similar compounds by Tanimoto-based similarity searching with a threshold of 95% against the PubChem database. The compounds retrieved were further subjected to Lipinski and Verber's filters to obtain drug like agents, then further filtered by diversity based screens with a cut off of 0.6. The compound with Pubchem ID: 91596862 was identified to have higher affinity than its parent. In addition it also proved to be non-toxic with a better ADMET profile and higher kinase activity. The compound identified in the study can be put to further in vitro drug testing to complement the present study.

Rapid functional screening of effective siRNAs against Plk1 and its growth inhibitory effects in laryngeal carcinoma cells

  • Lan, Huan;Zhu, Jiang;Ai, Qing;Yang, Zhengmei;Ji, Ying;Hong, Suling;Song, Fangzhou;Bu, Youquan
    • BMB Reports
    • /
    • v.43 no.12
    • /
    • pp.818-823
    • /
    • 2010
  • Plk 1 is overexpressed in many human malignancies including laryngeal carcinoma. However, its therapeutic potential has been never examined in laryngeal carcinoma. In the present study, a simple cellular morphology-based strategy was firstly proposed for rapidly screening the effective siRNAs against Plk1. Furthermore, we investigated the effects of Plk1 depletion via a novel identified effective siRNA against Plk1, Plk1 siRNA-607, on human laryngeal carcinoma Hep-2 cells. The results indicated that Plk1 siRNA-607 transfection resulted in a significant inhibition in Plk1 expression in cells, and subsequently caused a dramatic mitotic cell cycle arrest followed by massive apoptotic cell death, and eventually resulted in a significant decrease in growth and viability of the laryngeal carcinoma cells. Taken together, our present study not only suggests a simple strategy for rapidly screening effective siRNAs against Plk1 but also implicates that Plk1 may serve as a potential therapeutic target in human laryngeal carcinoma.