• Title/Summary/Keyword: therapeutic angiogenesis

Search Result 143, Processing Time 0.026 seconds

Soluble Expression and Purification of the Catalytic Domain of Human Vascular Endothelial Growth Factor Receptor 2 in Escherichia coli

  • Wei, Jia;Cao, Xiaodan;Zhou, Shengmin;Chen, Chao;Yu, Haijun;Zhou, Yao;Wang, Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1227-1233
    • /
    • 2015
  • Vascular endothelial growth factor (VEGF) plays a key role in angiogenesis through binding to its specific receptors, which mainly occurs to VEGF receptor 2 (VEGFR-2), a kinase insert domain-containing receptor. Therefore, the disruption of VEGFR-2 signaling provides a promising therapeutic approach for the treatment of cancer by inhibiting abnormal or tumorinduced angiogenesis. To explore this potential, we expressed the catalytic domain of VEGFR-2 (VEGFR-2-CD) as a soluble active kinase in Escherichia coli. The recombinant protein was purified and the VEGFR-2-CD activity was investigated. The obtained VEGFR-2-CD showed autophosphorylation activity and phosphate transfer activity comparable to the commercial enzyme. Furthermore, the IC50 value of known VEGFR-2 inhibitor was determined using the purified VEGFR-2-CD. These results indicated a possibility for functional and economical VEGFR-2-CD expression in E. coli to use for inhibitor screening.

The Anti-angiogenic Potential of a Phellodendron amurense Hot Water Extract in Vitro and ex Vivo (in Vitro와 ex vivo에서 황백 온수추출물의 신생혈관 억제효과)

  • Kim, Eok-Cheon;Kim, Seo Ho;Bae, Kiho;Kim, Han Sung;Gelinsky, Michael;Kim, Tack-Joong
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.693-702
    • /
    • 2015
  • Blocking new blood-vessel formation (angiogenesis) is now recognized as a useful approach to the therapeutic treatment of many solid tumors. The best validated approach to date is to target the vascular endothelial growth-factor (VEGF) pathway, a key regulator of angiogenesis. Many natural products and extracts that contain a variety of chemopreventive compounds have been shown to suppress the development of malignancies through their anti-angiogenic properties. Phellodendron amurense, which is widely used in Korean traditional medicine, has been shown to possess antitumor, antimicrobial, and anti-inflammatory properties, among others. The present study investigated the effects of P. amurense hot-water extract (PAHWE) on angiogenesis, a key process in tumor growth, invasion, and metastasis. To investigate PAHWE’s anti-angiogenic properties, this study’s authors performed an analysis of angiogenesis and endothelial-cell proliferation, migration, invasion, and tube formation, as well as zymogram assays and the rat aortic ring-sprouting assay. PAHWE inhibited cell growth, mobility, and vessel formation in response to VEGF in vitro and ex vivo. Furthermore, it reduced VEGF-induced intracellular signaling events, such as the activation of matrix metalloproteinases (MMPs) -2 and -9. These results indicate that PAHWE’s anti-angiogenic properties might lead to the development of potential drugs for treating angiogenesis-associated diseases such as cancer.

Therapeutic Effect of Hydrocolloid Membrane Containing Liriope platyphylla Extracts on the Burn Wounds of SD Rats (맥문동 혼합 하이드로콜로이드막의 제조 및 화상치료 효능평가)

  • Lee, Eun Hae;Go, Jun;Kim, Ji Eun;Koh, Eun Kyoung;Song, Sung Hwa;Sung, Ji Eun;Park, Chan Kyu;Lee, Hyeon Ah;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.523-532
    • /
    • 2015
  • A variety of previous pharmacological studies have suggested Liriope platyphylla (L. platyphylla) may exert beneficial biological effects on inflammation, diabetes, neurodegenerative disorder, obesity, constipation, and atopic dermatitis. In addition, hydrocolloid membranes (HCMs) have attracted attention in dermatological care, including in the treatment of scleroderma skin ulcers, cutaneous ulcers, permanent tympanic membrane perforations, pressure sores, and decubitus ulcers in the elderly. To investigate the therapeutic effects of HCM containing an aqueous extract of L. platyphylla (HCM-LP) on second-degree burn wounds, their physico-chemical properties were analyzed and the therapeutic effects were observed in SD rats after treatment with HCM-LP for 14 days. Significant declines in tensile strength (38.4%) and absorptiveness (46.3%), as well as an increase in surface roughness (38.1%) were detected in HCM-LP compared with that of HCM. In SD rats with burned skin, the wound diameter was shorter in the HCM-LP treated group than in the GZ group on post-surgical day 14, while the significant improvements in scar tissue reduction, epithelium regeneration, angiogenesis, and extracellular matrix deposition were observed in the HCM-LP-treated group during all experimental periods. Overall, these results suggest HCM-LP may accelerate the process of healing the burn injury skin of SD rats through the regulation of angiogenesis and connective tissue formation.

Study on the Antioxidative and Physiological Activities of Saururus chinensis Extract (삼백초(Saururus chinensis) 추출물의 항산화능 및 생리활성 연구)

  • Kang, Chang-Soo;Lee, Min-Joo;Park, Cheol-Bem;Bang, In-Seok
    • Journal of Life Science
    • /
    • v.22 no.6
    • /
    • pp.807-814
    • /
    • 2012
  • Saururus chinensis has long been widely used in oriental folk medicines to treat diseases. In the current study, organic solvent fractions obtained from the main methanolic extract of S chinensis were evaluated for their antioxidative and related physiological activities. The antioxidant activity of the fractions was measured using DPPH free radical scavenging activity, increased in a dose-dependent manner, and the $ED_{50}$ of the ethyl acetate fractions exhibited a value of 12.84 ${\mu}g/ml$ higher than 27.22 ${\mu}g/ml$ compared to the BHT. Also, the cell viability of S. chinensis on $H_2O_2$-induced HDF cell death ($IC_{50}$) showed the highest cell viability of 89.39% in 50 ${\mu}g/ml$ of ethyl acetate fraction and 67.98% of visible cell survival rate in n-butanolic fraction. Meanwhile, all fractions of the S. chinensis extract led to a slight down regulation of the mRNA expression of fibulin-5, which is related to skin elasticity, and the ethyl acetate fraction having high antioxidant activity showed a markedly inhibitory effect on chick embryonic angiogenesis using the CAM assay. These results suggest that the ethyl acetate fraction of S. chinensis extract could be a good material in therapeutic application for antioxidant and related anti-angiogenesis activities.

Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis - Black cumin and cancer -

  • Mollazadeh, Hamid;Afshari, Amir R.;Hosseinzadeh, Hossein
    • Journal of Pharmacopuncture
    • /
    • v.20 no.3
    • /
    • pp.158-172
    • /
    • 2017
  • Nigella sativa (N. sativa, family Ranunculaceae) is a medicinal plant that has been widely used for centuries throughout the world as a natural remedy. A wide range of chemical compounds found in N. sativa expresses its vast therapeutic effects. Thymoquinone (TQ) is the main component (up to 50%) in the essential oil of N. sativa. Also, pinene (up to 15%), p-cymene (40%), thymohydroquinone (THQ), thymol (THY), and dithymoquinone (DTQ) are other pharmacologically active compounds of its oil. Other terpenoid compounds, such as carvacrol, carvone, 4-terpineol, limonenes, and citronellol, are also found in small quantities in its oil. The main pharmacological characteristics of this plant are immune system stimulatory, anti-inflammatory, hypotensive, hepatoprotective, antioxidant, anti-cancer, hypoglycemic, anti-tussive, milk production, uricosuric, choleretic, anti-fertility, and spasmolytic properties. In this regard, we have searched the scientific databases PubMed, Web of Science, and Google Scholar with keywords of N. sativa, anti-cancer, apoptotic effect, antitumor, antioxidant, and malignancy over the period from 2000 to 2017. The effectiveness of N. sativa against cancer in the blood system, kidneys, lungs, prostate, liver, and breast and on many malignant cell lines has been shown in many studies, but the molecular mechanisms behind that anti-cancer role are still not clearly understood. From among the many effects of N. sativa, including its anti-proliferative effect, cell cycle arrest, apoptosis induction, ROS generation, anti-metastasis/anti-angiogenesis effects, Akt pathway control, modulation of multiple molecular targets, including p53, p73, STAT-3, PTEN, and $PPAR-{\gamma}$, and activation of caspases, the main suggestive anti-cancer mechanisms of N. sativa are its free radical scavenger activity and the preservation of various anti-oxidant enzyme activities, such as glutathione peroxidase, catalase, and glutathione-S-transferase. In this review, we highlight the molecular mechanisms of apoptosis and the anti-cancer effects of N. sativa, with a focus on its molecular targets in apoptosis pathways.

Effects and Mechanisms of Bone Marrow Mesenchymal Stem Cell Transplantation for Treatment of Ischemic Stroke in Hypertensive Rats

  • Yulin Liu;Ying Zhao;Yu Min;Kaifeng Guo;Yuling Chen;Zhen Huang;Cheng Long
    • International Journal of Stem Cells
    • /
    • v.15 no.2
    • /
    • pp.217-226
    • /
    • 2022
  • Background and Objectives: Stroke is the most common cause of human death and functional disability, resulting in more than 5 million deaths worldwide each year. Bone marrow mesenchymal stem cells (BMSCs) are a kind of stem cell that are able to self-renew and differentiate into many types of tissues. Therefore, BMSCs have the potential to replace damaged neurons and promote the reconstruction of nerve conduction pathways and connective tissue. However, it remains unknown whether transplanted BMSCs promote angiogenesis or improve the tissue microenvironment directly or indirectly through paracrine interactions. This study aimed to determine the therapeutic effect of BMSCs on ischemic stroke with hypertension in a rodent model and to explore the possible mechanisms underlying any benefits. Methods and Results: Middle cerebral artery occlusion was used to establish the experimental stroke model. The area of cerebral infarction, expression of vascular endothelial growth factor (VEGF) and glial cell line-derived neurotrophic factor (GDNF), and increment of astrocyte were measured by TTC staining, western blot, real-time quantitative polymerase chain reaction (RT-qPCR) and immunocytochemistry. The results showed a smaller area of cerebral infarction and improved neurological function scores in animals treated with BMSCs compared to controls. The results of RT-qPCR and western blot assays showed higher expression of VEGF and GDNF in BMSC-treated animals compared with controls. Our study also showed that one round of BMSCs transplantation significantly promoted the proliferation of subventricular zone and cortical cells, especially astrocytes, on the ischemic side following cerebral ischemia. Conclusions: Above findings support that BMSCs have therapeutic effects for ischemic stroke complicated with hypertension, which may occur via up-regulated expression of VEGF and GDNF and reduction of neuronal apoptosis, thereby promoting the recovery of nerve function.

Potential Therapeutic Targets for the Primary Gallbladder Carcinoma: Estrogen Receptors

  • Zhang, Ling-Qiang;Zhang, Xiu-De;Xu, Jia;Wan, Yong;Qu, Kai;Zhang, Jing-Yao;Wang, Zhi-Xin;Wei, Ji-Chao;Meng, Fan-Di;Tai, Ming-Hui;Zhou, Lei;Liu, Chang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2185-2190
    • /
    • 2013
  • Gallbladder carcinoma, the most frequent malignant neoplasm of the biliary tract system, has always been considered to feature late clinical presentation and diagnosis, limited treatment options and an extremely poor prognosis. In recent years, while the incidence of gallbladder cancer has appeared to be on the increase, the available treatment methods have not greatly improved survival of the affected patients. Thus, exploring new therapeutic targets for this devastating disease is an urgent matter at present. Epidemical studies have demonstrated that the incidence of gallbladder carcinoma exhibits a distinct gender bias, affecting females two to three times more than males, pointing to crucial roles of estrogen. It is well known that estrogen acts on target tissues by binding to estrogen receptors (ERs), which are mainly divided into three subtypes, $ER{\alpha}$, $ER{\beta}$ and $ER{\gamma}$. $ER{\alpha}$ and $ER{\beta}$ appear to have overlapping but also unique even opposite biological effects. As important pathogenic mediators, ERs have been considered to relate to several kinds of tumors. In gallbladder carcinoma tissue, ERs have been shown to be positively expressed, and ERs expression levels are associated with differentiation and prognosis of this cancer. Nevertheless, the exact mechanisms of estrogen inducing growth of gallbladder carcinoma remain poorly understood. On the base of the current investigations, we deduce that estrogen participates in promotion of gallbladder carcinoma by influencing the formation of gallstones, stimulating angiogenesis, and promoting abnormal proliferation. Since ERs mediate the carcinogenic actions of estrogen in gallbladder, and therapy targeting ERs may provide new directions for gallbladder carcinoma. Therefore, it should be stressed that ERs are potential therapeutic targets for gallbladder carcinoma.

Antitumor Effects of Fucoidan on Human Colon Cancer Cells via Activation of Akt Signaling

  • Han, Yong-Seok;Lee, Jun Hee;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.23 no.3
    • /
    • pp.225-232
    • /
    • 2015
  • We identified a novel Akt signaling mechanism that mediates fucoidan-induced suppression of human colon cancer cell (HT29) proliferation and anticancer effects. Fucoidan treatment significantly inhibited growth, induced G1-phase-associated upregulation of p21WAF1 expression, and suppressed cyclin and cyclin-dependent kinase expression in HT29 colon cancer cells. Additionally, fucoidan treatment activated the Akt signaling pathway, which was inhibited by treatment with an Akt inhibitor. The inhibition of Akt activation reversed the fucoidan-induced decrease in cell proliferation, the induction of G1-phase-associated p21WAF1 expression, and the reduction in cell cycle regulatory protein expression. Intraperitoneal injection of fucoidan reduced tumor volume; this enhanced antitumor efficacy was associated with induction of apoptosis and decreased angiogenesis. These data suggest that the activation of Akt signaling is involved in the growth inhibition of colon cancer cells treated with fucoidan. Thus, fucoidan may serve as a potential therapeutic agent for colon cancer.

(-)-Epigallocatechin-3-Gallate Induces Apoptosis and Inhibits Invasion and Migration of Human Cervical Cancer Cells

  • Sharma, Chhavi;Nusri, Qurrat El-Ain;Begum, Salema;Javed, Elham;Rizvi, Tahir A.;Hussain, Arif
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4815-4822
    • /
    • 2012
  • Invasion and metastasis are the major causes of cancer-related death. Pharmacological or therapeutic interventions such as chemoprevention of the progression stages of neoplastic development could result in substantial reduction in the incidence of cancer mortality. (-)-Epigallocatechin-3-gallate (EGCG), a promising chemopreventive agent, has attracted extensive interest for cancer therapy utilizing its antioxidant, anti-proliferative and inhibitory effects on angiogenesis and tumor cell invasion. In this study, we assessed the influence of EGCG on the proliferative potential of HeLa cells by cell viability assay and authenticated the results by nuclear morphological examination, DNA laddering assay and cell cycle analysis. Further we analyzed the anti-invasive properties of EGCG by wound migration assay and gene expression of MMP-9 and TIMP-1 in HeLa cells. Our results indicated that EGCG induced growth inhibition of HeLa cells in a dose- and time-dependent manner. It was observed that cell death mediated by EGCG was through apoptosis. Interestingly, EGCG effectively inhibited invasion and migration of HeLa cells and modulated the expression of related genes (MMP-9 and TIMP-1). These results indicate that EGCG may effectively suppress promotion and progression stages of cervical cancer development.

Chloroquine Exerts Anti-metastatic Activities Under Hypoxic Conditions in Cholangiocarcinoma Cells

  • Thongchot, Suyanee;Loilome, Watcharin;Yongvanit, Puangrat;Dokduang, Hasaya;Thanan, Raynoo;Techasen, Anchalee;Namwat, Nisana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.2031-2035
    • /
    • 2015
  • Intra-tumoral hypoxia is an environment that promotes tumor cell migration, angiogenesis and epithelial-mesenchymal transition that accounts for a major mechanism of metastasis. Chloroquine potentially offers a new therapeutic approach with an 'old' drug for effective and safe cancer therapies, as it exerts anti-metastatic activity. We investigated the inhibitory effect of chloroquine on cholangiocarcinoma (CCA) cell migration under cobalt chloride ($CoCl_2$)-stimulated hypoxia. We showed that chloroquine suppressed CCA cell migration under hypoxic-mimicking conditions on exposure to $100{\mu}M$ $CoCl_2$. Moreover, chloroquine stabilized the protein level of prolyl hydroxylase domain proteins (PHD-2) but reduced the levels of hypoxic responsive proteins such as hypoxia-inducible factor (HIF-$1{\alpha}$) and vascular endothelial growth factor (VEGF). It also suppressed epithelial mesenchymal transition (EMT) by increasing the ratio of E-cadherin to N-cadherin under hypoxic conditions. In conclusion, chloroquine can inhibit hypoxia-stimulated metastasis via HIF-$1{\alpha}$/VEGF/EMT which may serve as a useful additional strategy for CCA therapy.