• Title/Summary/Keyword: theory of elasticity

Search Result 568, Processing Time 0.025 seconds

Power Transaction Analysis using Game Theory (게임이론을 적용한 전력거래 해석)

  • Park, Man-Geun;Kim, Bal-Ho;Park, Jong-Bae;Jeong, Man-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.6
    • /
    • pp.266-271
    • /
    • 2000
  • The electric power industries are moving from the conventional monopolistic or vertically integrated environments to deregulated and competitive environments, where each participant is concerned with profit maximization rather than system-wide costs minimization. Consequently, the conventional least-cost approaches for the generation resource schedule can not exactly handle real-world situations. This paper presents a game theory application for analyzing power transactions and market design in a deregulated energy marketplace, where the market participants determine the net profits through the optimal bidding strategies. The demand elasticity of the energy price is considered for the realistic modeling of the deregulated marketplace.

  • PDF

Rubber-liked Biomaterial Experimental Setup based on Nonlinear Elasticity Theory (비선형 탄성이론에 기초한 혈관류 생체재료 실험장치)

  • Kang, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.90-97
    • /
    • 2010
  • In order to understand the biomaterial like the blood vessel of artery, there is a need to quantify the biomechanical behavior of the vessel. Using computer-controlled experimental system, the experiment can acquire data such as inner pressure, axial load, diameter and axial gauge length without contacting the specimen. Rubber-liked material which is similar to passive artery was selected as pseudo-biomaterial. Deformations are measured for pressure-diameter curves. The data were collected and stored online to be used in the feedback control of experimental protocols. Finally, the illustrative data obtained from the experimental system were presented and the system shows that strain invariants are controlled to understand the nonlinear elastic behavior of biomaterial which is involved with strain energy function.

Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities

  • Al-Maliki, Ammar F.H.;Faleh, Nadhim M.;Alasadi, Abbas A.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.2
    • /
    • pp.147-159
    • /
    • 2019
  • In present article, a size-dependent refined thick beam element has been established based upon nonlocal elasticity theory. Next, it is used to explore vibration response of porous metal foam nanobeams on elastic medium. The established beam element introduces ten degrees of freedom. Different porosity distributions called uniform, symmetric and asymmetric will be employed. Herein, introduced thick beam element contains shear deformations without using correction factors. Convergence and verification studies of obtained results from finite element method are also provided. The impacts of nonlocality factor, foundation factors, shear deformation, slenderness ratio, porosity kinds and porosity factor on vibration frequencies of metal foam nano-sized beams have been explored.

Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell

  • Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.479-493
    • /
    • 2018
  • In this paper nonlocal free vibration analysis of a doubly curved piezoelectric nano shell is studied. First order shear deformation theory and nonlocal elasticity theory is employed to derive governing equations of motion based on Hamilton's principle. The doubly curved piezoelectric nano shell is resting on Pasternak's foundation. A parametric study is presented to investigate the influence of significant parameters such as nonlocal parameter, two radii of curvature, and ratio of radius to thickness on the fundamental frequency of doubly curved piezoelectric nano shell.

Structural stability analysis of nonlocal Megneto-Electro-Elastic(MEE) nano plates on elastic foundation (탄성지반위에 놓인 비국소 자기-전기-탄성 나노 판의 구조안정해석)

  • Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.52-60
    • /
    • 2017
  • This study examined the structural stability of nonlocal magneto-electro-elastic nano plates on elastic foundations using first-order shear deformation theory. Navier's method has been used to solve the buckling loads for all edges simply supported boundary conditions. On the other hand, biaxial buckling analysis of nano-plates has beenrarely studied. According to the Maxwell equation and the magneto-electro boundary condition, the change inthe magnetic and electric potential along the thickness direction of the magneto-electro-elastic nano plate wasdetermined. To reformulate the elasticity theory of the magneto- electro-elastic nano plate, the differential constitutive equation of Eringen was used and the governing equation of the nonlocal elasticity theory was studied using variational theory. The effects of the elastic foundation arebased on Pasternak's assumption. The relationship between nonlocal theory and local theory was analyzed through calculation results. In addition, structural stability problems were investigated according to the electric and magnetic potentials, nonlocal parameters, elastic foundation parameters, and side-to-thickness ratio. The results of the analysis revealedthe effects of the magnetic and electric potential. These calculations can be used to compare future research on new material structures made of magneto-electro-elastic materials.

Development of Design and Field Quality Control Techniques of Shallow Foundation Resting on Intermediate Geomaterials (중간토에 지지된 직접기초의 설계 및 현장품질관리기법 개발)

  • Byun, Young-Gi;Park, Young-Ho;Jeong, Hoon-Jun;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1148-1155
    • /
    • 2010
  • To suggest a modified shallow foundation design method which can be considered the scale effect of foundation on IGM(intermediate geomaterial) soil layer, the weathered soil layer that is uniformly formed up to 8m(2B) with over 50 N-value is selected and 3 times field loading tests are performed on several sized square-shaped shallow foundations with 30, 75, 150, 240 and 400cm in width respectively. Because the soil modulus of elasticity(Es) calculated by soil investigation and 1st field test(PBT) results showed an underestimated tendency, a modified correlation is required for the reasonable estimation of Es on the weathered soil. Also, the N-value was increased with an increasing in depth. However, the N-values around the test foundations showed the different values even though the foundations on the same level because the test site was arranged by excavation. Therefore, the more detail soil investigations are required for the each test foundations respectively. Since Es based on elasticity theory is determined by the stress distribution shape of the foundation and elasticity modulus of the soil, the scale effect considered pressure-settlement curve can be clearly derived from the correlation on stress distribution shape and the variation of soil elasticity modulus with depth. Therefore, the modified correlation will be suggested to estimate a reasonable Es on the weathered soil, and the scale effect considered shallow foundation design method is also developed based on the elastic theory and field tests in this research.

  • PDF

Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory

  • Kaghazian, Abbas;Hajnayeb, Ali;Foruzande, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.617-624
    • /
    • 2017
  • Piezoelectric nanobeams are used in several nano electromechanical systems. The first step in designing these systems is conducting a vibration analysis. In this research, the free vibration of a piezoelectric nanobeam is analyzed by using the nonlocal elasticity theory. The nanobeam is modeled based on Euler-Bernoulli beam theory. Hamilton's principle is used to derive the equations of motion and also the boundary conditions of the system. The obtained equations of motion are solved by using both Galerkin and the Differential Quadrature (DQ) methods. The clamped-clamped and cantilever boundary conditions are analyzed and the effects of the applied voltage and nonlocal parameter on the natural frequencies and mode shapes are studied. The results show the success of Galerkin method in determining the natural frequencies. The results also show the influence of the nonlocal parameter on the natural frequencies. Increasing a positive voltage decreases the natural frequencies, while increasing a negative voltage increases them. It is also concluded that for the clamped parts of the beam and also other parts that encounter higher values of stress during free vibrations of the beam, anti-nodes in voltage mode shapes are observed. On the contrary, in the parts of the beam that the values of the induced stress are low, the values of the amplitude of the voltage mode shape are not significant. The obtained results and especially the mode shapes can be used in future studies on the forced vibrations of piezoelectric nanobeams based on Galerkin method.

Application of nonlocal elasticity theory on the wave propagation of flexoelectric functionally graded (FG) timoshenko nano-beams considering surface effects and residual surface stress

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad;Arani, M.R. Ghorbanpour
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.141-153
    • /
    • 2019
  • This research deals with wave propagation of the functionally graded (FG) nano-beams based on the nonlocal elasticity theory considering surface and flexoelectric effects. The FG nano-beam is resting in Winkler-Pasternak foundation. It is assumed that the material properties of the nano-beam changes continuously along the thickness direction according to simple power-law form. In order to include coupling of strain gradients and electrical polarizations in governing equations of motion, the nonlocal non-classical nano-beam model containg flexoelectric effect is used. Also, the effects of surface elasticity, dielectricity and piezoelectricity as well as bulk flexoelectricity are all taken into consideration. The governing equations of motion are derived using Hamilton principle based on first shear deformation beam theory (FSDBT) and also considering residual surface stresses. The analytical method is used to calculate phase velocity of wave propagation in FG nano-beam as well as cut-off frequency. After verification with validated reference, comprehensive numerical results are presented to investigate the influence of important parameters such as flexoelectric coefficients of the surface, bulk and residual surface stresses, Winkler and shear coefficients of foundation, power gradient index of FG material, and geometric dimensions on the wave propagation characteristics of FG nano-beam. The numerical results indicate that considering surface effects/flexoelectric property caused phase velocity increases/decreases in low wave number range, respectively. The influences of aforementioned parameters on the occurrence cut-off frequency point are very small.

Nonlocal elasticity approach for free longitudinal vibration of circular truncated nanocones and method of determining the range of nonlocal small scale

  • Li, C.;Sui, S.H.;Chen, L.;Yao, L.Q.
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.279-286
    • /
    • 2018
  • The free longitudinal vibration of a circular truncated nanocone is investigated based on the nonlocal elasticity theory. Exact analytical formulations for tapered nanostructures are derived and the nonlinear differential governing equation of motion is developed. The nonlocal small scale effect unavailable in classical continuum theory is addressed to reveal the long-range interaction of atoms implicated in nonlocal constitutive relation. Unlike most previous studies applying the truncation method to the infinite higher-order differential equation, this paper aims to consider all higher-order terms to show the overall nonlocality. The explicit solution of nonlocal stress for longitudinal deformation is determined and it is an infinite series incorporating the classical stress derived in classical mechanics of materials and the infinite higher-order derivative of longitudinal displacement. Subsequently, the first three modes natural frequencies are calculated numerically and the significant effects of nonlocal small scale and vertex angle on natural frequencies are examined. The coupling phenomenon of natural frequency is observed and it is induced by the combined effects of nonlocal small scale and vertex angle. The critical value of nonlocal small scale is defined, and after that a new proposal for determining the range of nonlocal small scale is put forward since the principle of choosing the nonlocal small scale is still unclear at present. Additionally, two different types of nonlocal effects, namely the nonlocal stiffness weakening and strengthening, reversed phenomena existing in nanostructures are observed and verified. Hence the opposite nonlocal effects are resolved again clearly. The nano-engineers dealing with a circular truncated nanocone-based sensors and oscillators may benefit from the present work.

Investigation of nonlinear vibration behavior of the stepped nanobeam

  • Mustafa Oguz Nalbant;Suleyman Murat Bagdatli;Ayla Tekin
    • Advances in nano research
    • /
    • v.15 no.3
    • /
    • pp.215-224
    • /
    • 2023
  • Nonlinearity plays an important role in control systems and the application of design. For this reason, in addition to linear vibrations, nonlinear vibrations of the stepped nanobeam are also discussed in this manuscript. This study investigated the vibrations of stepped nanobeams according to Eringen's nonlocal elasticity theory. Eringen's nonlocal elasticity theory was used to capture the nanoscale effect. The nanoscale stepped Euler Bernoulli beam is considered. The equations of motion representing the motion of the beam are found by Hamilton's principle. The equations were subjected to nondimensionalization to make them independent of the dimensions and physical structure of the material. The equations of motion were found using the multi-time scale method, which is one of the approximate solution methods, perturbation methods. The first section of the series obtained from the perturbation solution represents a linear problem. The linear problem's natural frequencies are found for the simple-simple boundary condition. The second-order part of the perturbation solution is the nonlinear terms and is used as corrections to the linear problem. The system's amplitude and phase modulation equations are found in the results part of the problem. Nonlinear frequency-amplitude, and external frequency-amplitude relationships are discussed. The location of the step, the radius ratios of the steps, and the changes of the small-scale parameter of the theory were investigated and their effects on nonlinear vibrations under simple-simple boundary conditions were observed by making comparisons. The results are presented via tables and graphs. The current beam model can assist in designing and fabricating integrated such as nano-sensors and nano-actuators.