• Title/Summary/Keyword: theoretical yield

Search Result 342, Processing Time 0.028 seconds

A Study on the Performance of Catalysts for the Recombination of Oxyhydrogen Gas Generated in Secondary Battery (이차전지내 발생하는 수소-산소 혼합기체 재결합용 촉매의 성능 측정 및 이론적 모델 연구)

  • Kim, Yong-Sik;Chang, Min-Hwan;Ju, Jeh-Beck
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.71-77
    • /
    • 2014
  • The performance of catalysts for the recombination of oxyhydrogen gas was measured and compared with the results obtained from theoretical model. The oxyhydrogen gas was generated by the electrolysis cell and recombined through the fixed bed catalytic reactor. The yield that is the ratio of water-amount produced to the water-amount consumed in the electrolysis cell was increased with the increase of KOH concentration in electrolysis cell and the applied current. The catalyst 1 showed the best performance and the yield was under 60 %. The faradic yield calculated by Faraday's law showed about 100% in maximum with catalyst 1. The production rate of water generated by the recombination was 5-40 g/day dependent on the flow rate of mixed gas. Considering the results calculated from the pseudo-homogeneous catalytic reactor model, the hot point inside the reactor was moved to the direction of outlet and the maximum temperatures were $440-480^{\circ}K$ when the gas flow rate increased. The production rate of water calculated from the theoretical model showed good agreement with experimental results below the flow rate of $0.5cm^3/sec$, but there were much differences above that flow rate.

Forming Limit Diagrams of Zircaloy-4 and Zirlo Sheets for Stamping of Spacer Grids of Nuclear Fuel Rods (핵연료 지지격자 성형을 위한 Zircaloy-4와 Zirlo 판재의 성형한계도 예측)

  • Seo, Yun-Mi;Hyun, Hong-Chul;Lee, Hyung-Yil;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.889-897
    • /
    • 2011
  • In this work, we investigated the theoretical forming limit models for Zircaloy-4 and Zirlo used for spacer grid of nuclear fuel rods. Tensile and anisotropy tests were performed to obtain stress-strain curves and anisotropic coefficients. The experimental forming limit diagrams (FLD) for two materials were obtained by dome stretching tests following NUMISHEET 96. Theoretical FLD depends on FL models and yield criteria. To obtain the right hand side (RHS) of FLD, we applied the FL models (Swift's diffuse necking, M-K theory, S-R vertex theory) to Zircaloy-4 and Zirlo sheets. Hill's local necking theory was adopted for the left hand side (LHS) of FLD. To consider the anisotropy of sheets, the yield criteria of Hill and Hosford were applied. Comparing the predicted curves with the experimental data, we found that the RHS of FLD for Zircaloy-4 can be described by the Swift model (with the Hill's criterion), while the LHS of the FLD can be explained by Hill model. The FLD for Zirlo can be explained by the S-R model and the Hosford's criterion (a = 8).

Biochemical Methane Potential of Agricultural Byproduct in Greenhouse Vegetable Crops (국내 주요 시설채소 부산물의 메탄 생산 퍼텐셜)

  • Shin, Kook-Sik;Kim, Chang-Hyun;Lee, Sang-Eun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1252-1257
    • /
    • 2011
  • Number of crop residues generated at large amount in agriculture can be utilized as substrate in methane production by anaerobic digestion. Greenhouse vegetable crop cultivation that adopting intensive agricultural system require the heating energy during winter season, meanwhile produce waste biomass source for the methane production. The purpose of this study was to investigate the methane production potential of greenhouse vegetable crop residues and to estimate material and energy yield in greenhouse system. Cucumber, tomato, and paprika as greenhouse vegetable crop were used in this study. Fallen fruit, leaf, and stem residues were collected at harvesting period from the farmhouses (Anseong, Gyeonggi, Korea) adopting an intensive greenhouse cultivation system. Also the amount of fallen vegetables and plant residues, and planting density of each vegetable crop were investigated. Chemical properties of vegetable waste biomass were determined, and theoretical methane potentials were calculated using Buswell's formula from the element analysis data. Also, BMP (Biochemical methane potential) assay was carried out for each vegetable waste biomass in mesophilic temperature ($38^{\circ}C$). Theoretical methane potential ($B_{th}$) and Ultimate methane potential ($B_u$) off stem, leaf, and fallen fruit in vegetable residues showed the range of $0.352{\sim}0.485Nm^3\;kg^{-1}VS_{added}$ and $0.136{\sim}0.354Nm^3\;kg^{-1}VS_{added}$ respectively. The biomass yields of residues of tomato, cucumber, and paprika were 28.3, 30.5, and $21.5Mg\;ha^{-1}$ respectively. The methane yields of tomato, cucumber, and paprika residues showed 645.0, 782.5, and $686.8Nm^3\;ha^{-1}$. Methane yield ($Nm^3\;ha^{-1}$) of crop residue may be highly influenced by biomass yield which is mainly affected by planting density.

Characteristics of Acid-hydrolysis and Ethanol Fermentation of Laminaria japonica (다시마의 산 가수분해와 에탄올 발효 특성)

  • Na, Choon-Ki;Song, Myoung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.141-148
    • /
    • 2012
  • In order to study the utilization of brown seaweed Laminaria japonica as an alternative renewable feedstock for bioethanol production, the properties of acid hydrolysis and ethanol fermentation were investigated. The acid hydrolysis enhanced the final yield of fermentable sugars, which led great increase of ethanol productivity. The maximum yield of reducing sugars reached 135 mg/g-dry Laminaria japonica after 1.0N sulfuric acid-hydrolysis at $130^{\circ}C$ for 6 h. The Saccharomyces cerevisiae (ATCC 24858) could ferment $C_6$-sugars like glucose, galactose and mannose into ethanol, but not $C_5$-sugars like arabinose and xylose. Optimal fermentation time varied with sugars; 48 h for glucose, 72 h for galactose, and 96 h for mannose. Nevertheless, the ethanol yield from the hydrolysate reached 242 mg/g-dry Laminaria japonica after fermentation by the S. cerevisiae at $35^{\circ}C$ for 96 h, which corresponds to approximately 4 times more than the theoretical yield from total reducing sugars in the hydrolysates. It indicates that the non-reducing sugars or oligosaccharides dissolved in the hydrolysate played an important role in producing bioethanol. The ethanol concentration linearly increased from 2.4 to 9.2 g/L, while the ethanol yield per dry weight of biomass decreased from 242 to 185 mg/g, with increasing the ratio of biomass to acid solution from 1 to 5% (w/v). The bioethanol yield estimated was approximately 7,400~9,600 kg/ha/year, and indicated that Laminaria japonica is a promissing feedstock for bioethanol production.

Deformation Characteristics of Steel Plate Cellular Bulkhead (강판셀 호안의 변형특성)

  • Jeong Wook Kang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.4
    • /
    • pp.165-175
    • /
    • 1997
  • This study qualitatively reviewed effect of the height of loading and the ratio of penetration on. the characteristics of deformation of cellular bulkhead by performing a model test of embedded steel plate cellular bulkhead which had different loading height and penetration ratio. And we also examined the effect of the loading height upon the shear behavior by performing two-dimensional model test making use of aluminum rods for a filler. Besides, test results and theoretical values based on Hansen's earth pressure theory were compared and reviewed. In consequence, it was ascertained that the yield moment of cells depended on the height of loading and the ratio of penetration, and the slip surface was located on the lower area of a cell interior according as the height of loading becomes lower. The theoretical consideration which was based on the theory of earth pressure proposed by Hansen revealed that the test results accorded with the theoretical values to some degree, and the same results were derived about the location change of the slip surface.

  • PDF

Enhancement of Saccharification Yield of Ulva pertusa kjellman for Ethanol Production through High Temperature Liquefaction Process (고압액화공정을 이용한 구멍갈파래의 발효용 알코올 당화수율 증진)

  • Han, Jae-Gun;Oh, Sung-Ho;Choi, Woon-Yong;Kwon, Jung-Woong;Seo, Hyeon-Beom;Jeong, Kyung-Hwan;Kang, Do-Hyung;Lee, Hyeon-Yong
    • KSBB Journal
    • /
    • v.25 no.4
    • /
    • pp.357-362
    • /
    • 2010
  • Green alga, Ulva pertusa kjelmann has been known to be one of the largest pollutants in Korea. Therefore, the efficient pretreatment processes have been required to improve the yields of fermentable sugar. The optimal pretreatment conditions were determined to be $195^{\circ}C$ for 15 min. The sugar yield of glucose and xylose were estimated as 20.5%, and 5.0% respectively, based on theoretical yields. However solid residues were estimated enzymatic digestibility of 90-95% with cellulase loading of 15 FPU/g glucan. This process was proved to generate the low concentration of Hydroxy-Methyl-Furfural (51 ppm), which resulted in ethanol production with 95% of the maximum conversion yield from glucose in the culture of Saccharomyces cerevisiae (ATCC, 24858). This study showed that Ulva pertusa kjellmann can be used as a bioetahnol resource using the high temperature liquefaction process.

Combined Aqueous Ammonia-Dilute Sulfuric Acid Pretreatment of Miscanthus for Bioethanol Production (바이오에탄올 제조를 위한 억새의 암모니아-희황산 복합 전처리)

  • Bark, Surn-Teh;Koo, Bon-Cheol;Choi, Yong-Hwan;Moon, Youn-Ho;Ahn, Seung-Hyun;Cha, Young-Lok;Kim, Jung Kon;An, Gi Hong;Suh, Sae-Jung;Park, Don-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.179.1-179.1
    • /
    • 2011
  • Pretreatment of cellulosic biomass is necessary before enzymatic saccharification and fermentation. The objective of this study was to evaluate the effect of combined aqueous ammonia-dilute sulfuric acid treatment on cellulosic biomass. Miscanthus was pretreated using aqueous ammonia and dilute sulfuric acid solution under high temperature and pressure conditions to be converted into bioethanol. Aqueous ammonia treatment was performed with 15 %(w/w) ammonia solution at $150^{\circ}C$ of reaction temperature and 20 minutes of reaction time. And then, dilute sulfuric acid treatment was performed with 1.0 %(w/w) sulfuric acid solution at $150^{\circ}C$ of reaction temperature and 10 minutes of reaction time. The compositional variations of this combined aqueous ammonia-dilute sulfuric acid treatment resulted in 68.0 % of cellulose recovery and 95.7 % of hemicellulose, 81.3 % of lignin, 89.1 % of ash removal respectively. The enzymatic digestibility of 90.5 % was recorded in the combined pretreated Miscanthus sample and it was 14.7 times higher than the untreated sample. The ethanol yield in the Simultaneous Saccharification and Fermentation was 90.4 % of maximum theoretical yield based on cellulose content of the combined pretreated sample and it was about 98 % compared to the ${\alpha}$-cellulose ethanol yield.

  • PDF

Saccharomyces cerevisiae Strain Improvement Using Selection, Mutation, and Adaptation for the Resistance to Lignocellulose-Derived Fermentation Inhibitor for Ethanol Production

  • Jang, Youri;Lim, Younghoon;Kim, Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.667-674
    • /
    • 2014
  • Twenty-five Saccharomyces cerevisiae strains were screened for the highest sugar tolerance, ethanol-tolerance, ethanol production, and inhibitor resistance, and S. cerevisiae KL5 was selected as the best strain. Inhibitor cocktail (100%) was composed of 75 mM formic acid, 75 mM acetic acid, 30 mM furfural, 30 mM hydroxymethyl furfural (HMF), and 2.7 mM vanillin. The cells of strain KL5 were treated with ${\gamma}$-irradiation, and among the survivals, KL5-G2 with improved inhibitor resistance and the highest ethanol yield in the presence of inhibitor cocktail was selected. The KL5-G2 strain was adapted to inhibitor cocktail by sequential transfer of cultures to a minimal YNB medium containing increasing concentrations of inhibitor cocktail. After 10 times of adaptation, most of the isolated colonies could grow in YNB with 80% inhibitor cocktail, whereas the parental KL5 strain could not grow at all. Among the various adapted strains, the best strain (KL5-G2-A9) producing the highest ethanol yield in the presence of inhibitor cocktail was selected. In a complex YP medium containing 60% inhibitor cocktail and 5% glucose, the theoretical yield and productivity (at 48 h) of KL5-G2-A9 were 81.3% and 0.304 g/l/h, respectively, whereas those of KL5 were 20.8% and 0.072 g/l/h, respectively. KL5-G2-A9 reduced the concentrations of HMF, furfural, and vanillin in the medium in much faster rates than KL5.

Overexpression of OsNAC17 enhances drought tolerance in rice

  • Kim, Tae Hwan;Kim, Ju-Kon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.168-168
    • /
    • 2017
  • Drought conditions during cultivation reduce agricultural production yield less than a theoretical maximum yield under normal condition. Plant specific NAC transcription factors in rice are known to play an essential roles in stress resistance transcriptional regulation. In this study, we report the rice (Oryza sativa L japonica) NAM, AFTF and CUC transcription factor OsNAC17, which is predominantly induced by abiotic stress in leaf, was contribute to the drought tolerance mediated reactive oxygen species (ROS) in transgenic rice plants. Constitutive (PGD1) promoter was introduced to overexpress OsNAC17 and produced the transgenic PDG1:OsNAC17. Overexpression of OsNAC17 throughout the whole plant improved drought resistance phenotype at the vegetative stage. Morphological characteristics such as grain yield, grain filling rate, and total grain weight improved by 22~64% over wild type plants under drought conditions during the reproductive stage. The improved drought tolerance in transgenic rice was involved in reducing stomatal density up to 15% than in wild type plants and in increasing reactive oxygen species-scavenging enzyme. DEG profiling experiment identified 119 up-regulated genes by more than twofold (P<0.01). These genes included UDP-glycosyltransferase family protein, similar to 2-alkenal reductase (NADPH-dependent oxireductase), similar to retinol dehydrogenase 12, Lipoxygenase, and NB-ARC domain containing protein related in cell death. Furthermore, OsNAC17 was act as a transcriptional activator, which has an activation domain in C-terminal region. These result demonstrate that the overexpression of OsNAC17 improve drought tolerance by regulating ROS scavenging enzymes and by reducing stomatal density

  • PDF

Biological aspects and population dynamics of Indian mackerel (Rastrelliger kanagurta) in Barru, Makassar Strait, Indonesia

  • Andi Asni;Hasrun;Ihsan;Najamuddin
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.392-409
    • /
    • 2024
  • The present study aims to analyze the biological aspects and population dynamics of Indian mackerel in Barru waters. Data was collected in Barru for 11 months, from June 2022 to April 2023. The observed parameters of biological aspects included gonadal maturation stages (GMSs), size at first gonadal maturation, and length-weight relationship. Meanwhile, the aspects of population dynamics encompass age group, growth, mortality rate, and exploitation rate. Data analysis consisted of morphological selection of general maturation stages, Spearman-Kärber method in estimating gonadal first maturation size, Bhattacharya method in identifying age group, von Bertalanffy function through FISAT II to measure growth (L and K), Pauly Model to estimate mortality rate, Beverton & Holt Model to estimate Y/R, and virtual population analysis (VPA) analysis to estimate stock and fish yield. The results demonstrated that GMS I was observed to be dominant, followed by stages II and III. The initial gonadal maturation was estimated to be 17.98-19.28 cm (FL) for females and 17.98-19.27 cm (FL) for males. The length-weight relationship in male and female Indian mackerels indicated a positive allometric growth. The mode grouping analysis results from the fork length measurement revealed three age groups. It was also identified that the asymptotic length (L) = 29.5 cm (fork length), growth rate coefficient (K) = 0.46 per year, and theoretical age at zero length (t0) = -0.3576 per year. Total mortality (Z) = 2.67 per year, natural mortality (M) = 1.10 per year, fishing mortality (F) = 1.57 per year, and exploitation rate (E) = 0.59, the actual Y/R = 0.083 gram/recruitment, and optimal Y/R 0.03 gram/recruitment. Fishing mortality is higher than the natural mortality rate, and a high exploitation value (E > 0.5) also reflects over-exploitation. VPA analysis on fish yields and stock estimation reported a highly exploited rate between the 11.5 cm and 14.5 cm length classes and an exceeding current yield of 467.07 tons/year with a recommended yield of 233.53 tons/year to ensure population sustainability.