Browse > Article

Enhancement of Saccharification Yield of Ulva pertusa kjellman for Ethanol Production through High Temperature Liquefaction Process  

Han, Jae-Gun (School of Biotechnology and Bioengineering, Kangwon Natl. Univ.)
Oh, Sung-Ho (School of Biotechnology and Bioengineering, Kangwon Natl. Univ.)
Choi, Woon-Yong (School of Biotechnology and Bioengineering, Kangwon Natl. Univ.)
Kwon, Jung-Woong (Department of Applied BioSciences, Konkuk University)
Seo, Hyeon-Beom (Department of Food and Biotechnology, Chungju University)
Jeong, Kyung-Hwan (Department of Food and Biotechnology, Chungju University)
Kang, Do-Hyung (Korea Ocean Research & Development Institute)
Lee, Hyeon-Yong (School of Biotechnology and Bioengineering, Kangwon Natl. Univ.)
Publication Information
KSBB Journal / v.25, no.4, 2010 , pp. 357-362 More about this Journal
Abstract
Green alga, Ulva pertusa kjelmann has been known to be one of the largest pollutants in Korea. Therefore, the efficient pretreatment processes have been required to improve the yields of fermentable sugar. The optimal pretreatment conditions were determined to be $195^{\circ}C$ for 15 min. The sugar yield of glucose and xylose were estimated as 20.5%, and 5.0% respectively, based on theoretical yields. However solid residues were estimated enzymatic digestibility of 90-95% with cellulase loading of 15 FPU/g glucan. This process was proved to generate the low concentration of Hydroxy-Methyl-Furfural (51 ppm), which resulted in ethanol production with 95% of the maximum conversion yield from glucose in the culture of Saccharomyces cerevisiae (ATCC, 24858). This study showed that Ulva pertusa kjellmann can be used as a bioetahnol resource using the high temperature liquefaction process.
Keywords
Ulva pertusa kjelmann; pretreatment; fermentable sugar; HMF; ethanol production;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, M. G., J. H. Lim, and S. K. Kam (2002) Biosorption characteristics in the mixed heavy metal solution by biosorbents of marine brown algae. Korean J. Chem. Eng. 19: 277-284.   DOI   ScienceOn
2 Mosier, N., R. Hendrickson, M. Ho, M. Sedlak, and M. R. Ladisch (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour. Technol. 96: 1986-1993.   DOI   ScienceOn
3 Wright, L. (2006) Worldwide commercial development of bioenergy with a focus on energy crop-based project. Biomass Bioenerg. 30: 706-714.   DOI   ScienceOn
4 Lishi, Y., Z. Hongman, C. Jingwen, L. Zengxiang, J. Qiang, J. Honghua, and H. He (2008) Dilute sulfuric acid cycle spray flow-through pretreatment of corn stover for enhancement of sugar recovery. Bioresour. Technol. 100: 1803-1808.
5 Choi, J. W., H. J. Lim, K. S. Han, H. Y. Kang, and D. H. Choi (2005) Characterization of degradation features and degradative product of poplar wood (populus alba ${\times}$ glandulosa) by flow type-supercritical water treatment. J. Kor. For. En. 24: 39-46.
6 Todd, A. L. and E. W. Charles (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour. Technol. 96: 1967-1877.   DOI   ScienceOn
7 Linde, M., M. Galbe, and G. Zacchi (2008) Bioethanol production from non-starch carbohydrate residues in process stream from a dry-mill ethanol plant. Bioresour. Technol. 99: 6505-6511.   DOI   ScienceOn
8 Nathan, M., W. Charles, D. Bruce, E. Richard, Y. Y. Lee, H. Mark, and L. Michael (2005) Features of promising thechnologies for pretreatments of lignocellulosic biomass. Bioresour. Technol. 96: 673-686.   DOI   ScienceOn
9 Araque, E., C. Parra, J. Freer, D. Contreras, J. Rodriguez, R. Mendonc, and J. Benza (2008) Evaluation of organosolv pretreatment for the conversion of Pinus radita d. don to ethanol. Enzyme Microb. Technol. 43: 157-162.   DOI   ScienceOn
10 Chaogang, L. and C. E. Wyman (2005) Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresour. Technol. 96: 1978-1985.   DOI   ScienceOn
11 Davis, T. A., B. Volesky, and A. Mucci (2003) A review of the bio-chemistry of heavy metal biosorption by brown algae. Water Res. 37: 4311-4330.   DOI   ScienceOn
12 Koo, S. Y., K. H. Cha, and D. U. Lee (2007) Effects of high hydrostatic pressure of foods and biological system. Food Sci. lnd. 40: 23-30.
13 Zhang, S., J. Zhu, and C. Wang (2004) Novel high pressure extraction technology. International Journal of Pharmaceutics 278: 471-474.   DOI   ScienceOn
14 Gray, K. A., L. Zhao, and M. Emphage (2006) Bioethanol. Curr. Opin. Chem. Biol. 10: 1-6.   DOI   ScienceOn
15 Sugano, Y., H. Kodama, I. Terada, Y. Yamajakiand, and M. Noma (1994) Purification and characterization of a novel enzyme, $\alpha-neoagararooligosaccharide$ hydrolase, from a marine bacterium, Vibrio sp. strain JT0107. J. Bacteriol. 176: 6812-6818.   DOI
16 Fang, Z., T. Sato, R. L. Smith-Jr, H. Inomata, K. Arai, and J. A. Kozimski (2008) Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water. Bioresour. Technol. 99: 3424-3430.   DOI   ScienceOn
17 Yu, Q. and P. Kaewsarn (1999) A model for pH dependent equilibrium of heavy metal biosorption. Korean J. Chem. Eng. 16: 753-757.   DOI   ScienceOn
18 Munoz, R. and B. Guieysse (2006) Algal-bacterial processes for the treatment of hazardous contaminant: A review. Water Res. 40: 2799-2815.   DOI   ScienceOn
19 Saulnier, L., C. Marot, E. Chanliaud, and J. F. Thibault (1995) Cell wall polysaccharide interaction in maize bran. Carbohydr. Polym. 26: 279-287.   DOI   ScienceOn
20 Kloareg, B. and R. S. Quatrano (1988) Structure of the cell walls of marine algae and ecophysical function of the matrix polysaccharides. Oceanogr. Mar. Biol. Ann. Rev. 26: 259-315.