• Title/Summary/Keyword: theoretical calculation

Search Result 844, Processing Time 0.019 seconds

Estimation of Characteristics and Methane Production Rate of Food Waste (음식물류 폐기물 특성 및 메탄 발생가능량 평가)

  • Lee, Min-Kyu;Kim, Kyung;Shin, Hyun-Gon;Bae, Ki-Hwan;Kim, Choong-Gon;Park, Joon-Seok
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.223-230
    • /
    • 2019
  • This research was performed to evaluate the characteristics of food waste from 5 areas in Gangwon Province, Korea and to predict the $CH_4$ gas production rate. Food wastes were sampled in July and September, 2017. The amount of methane gas generation was evaluated through the biochemical methane potential (BMP) test and a calculation method using chemical composition. Average bulk density and pH of the food wastes were in the range of $0.758{\sim}0.850g\;cm^{-3}$ and 4.29 ~ 4.75, respectively. By physical composition, vegetables were the highest with 56.43 ~ 72.81% with fruits recording 5.31 ~ 8.95%, cereals 1.60 ~ 18.73%, fish and meat 4.47 ~ 12.11%, and filtrate 1.76 ~ 3.64%. The average water content was 69.30 ~ 75.87%, and VS and ash content were 22.50 ~ 27.98% and 1.63 ~ 2.48%, respectively. In addition, $BOD_5$, $COD_{Cr}$, and $COD_{Mn}$ were in the ranges of $17,690.3{\sim}33,154.9mg\;L^{-1}$, $106,212.3{\sim}128,695.5mg\;L^{-1}$, and $51,266.1{\sim}63,426.3mg\;L^{-1}$, respectively. The NaCl content ranged from 0.81 to 1.17%. The results of elemental analysis showed that the contents of C, H, O, N, and S were 44.87 ~ 48.1%, 7.12 ~ 7.57%, 40.13 ~ 43.78%, 3.22 ~ 4.14%, and 0.00 ~ 0.02%, respectively. In a comparison of the methane production yield per VS mass of food waste, there was no significant difference between the cumulative amount (${0.303{\sim}0.354m_{CH4}}^3\;{kg_{VS}}^{-1}$) by the BMP test and the theoretical amount (${0.294{\sim}0.352m_{CH4}}^3\;{kg_{VS}}^{-1}$) calculated by chemical composition.

Development and Testing of the Model of Health Promotion Behavior in Predicting Exercise Behavior

  • O'Donnell, Michael P.
    • Korean Journal of Health Education and Promotion
    • /
    • v.2 no.1
    • /
    • pp.31-61
    • /
    • 2000
  • Introduction. Despite the fact that half of premature deaths are caused by unhealthy lifestyles such as smoking tobacco, sedentary lifestyle, alcohol and drug abuse and poor nutrition, there are no theoretical models which accurately explain these health promotion related behaviors. This study tests a new model of health behavior called the Model of Health Promotion Behavior. This model draws on elements and frameworks suggested by the Health Belief Model, Social Cognitive Theory, the Theory of Planned Action and the Health Promotion Model. This model is intended as a general model of behavior but this first test of the model uses amount of exercise as the outcome behavior. Design. This study utilized a cross sectional mail-out, mail-back survey design to determine the elements within the model that best explained intentions to exercise and those that best explained amount of exercise. A follow-up questionnaire was mailed to all respondents to the first questionnaire about 10 months after the initial survey. A pretest was conducted to refine the questionnaire and a pilot study to test the protocols and assumptions used to calculate the required sample size. Sample. The sample was drawn from 2000 eligible participants at two blue collar (utility company and part of a hospital) and two white collar (bank and pharmaceutical) companies located in Southeastern Michigan. Both white collar site had employee fitness centers and all four sites offered health promotion programs. In the first survey, 982 responses were received (49.1%) after two mailings to non-respondents and one additional mailing to secure answers to missing data, with 845 usable cases for the analyzing current intentions and 918 usable cases for the explaining of amount of current exercise analysis. In the follow-up survey, questionnaires were mailed to the 982 employees who responded to the initial survey. After one follow-up mailing to non-respondents, and one mailing to secure answers to missing data, 697 (71.0%) responses were received, with 627 (63.8%) usable cases to predict intentions and 673 (68.5%) usable cases to predict amount of exercise. Measures. The questionnaire in the initial survey had 15 scales and 134 items; these scales measured each of the variables in the model. Thirteen of the scales were drawn from the literature, all had Cronbach's alpha scores above .74 and all but three had scores above .80. The questionnaire in the second mailing had only 10 items, and measured only outcome variables. Analysis. The analysis included calculation of scale scores, Cronbach's alpha, zero order correlations, and factor analysis, ordinary least square analysis, hierarchical tests of interaction terms and path analysis, and comparisons of results based on a random split of the data and splits based on gender and employer site. The power of the regression analysis was .99 at the .01 significance level for the model as a whole. Results. Self efficacy and Non-Health Benefits emerged as the most powerful predictors of Intentions to exercise, together explaining approximately 19% of the variance in future Intentions. Intentions, and the interaction of Intentions with Barriers, with Support of Friends, and with Self Efficacy were the most consistent predictors of amount of future exercise, together explaining 38% of the variance. With the inclusion of Prior Exercise History the model explained 52% of the variance in amount of exercise 10 months later. There were very few differences in the variables that emerged as important predictors of intentions or exercise in the different employer sites or between males and females. Discussion. This new model is viable in predicting intentions to exercise and amount of exercise, both in absolute terms and when compared to existing models.

  • PDF

Equilibrium Fractionation of Clumped Isotopes in H2O Molecule: Insights from Quantum Chemical Calculations (양자화학 계산을 이용한 H2O 분자의 Clumped 동위원소 분배특성 분석)

  • Sehyeong Roh;Sung Keun Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.355-363
    • /
    • 2023
  • In this study, we explore the nature of clumped isotopes of H2O molecule using quantum chemical calculations. Particularly, we estimated the relative clumping strength between diverse isotopologues, consisting of oxygen (16O, 17O, and 18O) and hydrogen (hydrogen, deuterium, and tritium) isotopes and quantify the effect of temperature on the extent of isotope clumping. The optimized equilibrium bond lengths and the bond angles of the molecules are 0.9631-0.9633 Å and 104.59-104.62°, respectively, and show a negligible variation among the isotopologues. The calculated frequencies of the modes of H2O molecules decrease as isotope mass number increases, and show a more prominent change with varying hydrogen isotopes over those with oxygen isotopes. The equilibrium constants of isotope substitution reactions involving these isotopologues reveal a greater effect of hydrogen mass number than oxygen mass number. The calculated equilibrium constants of clumping reaction for four heavy isotopologues showed a strong correlation; particularly, the relative clumping strength of three isotopologues was 1.86 times (HT18O), 1.16 times (HT17O), and 0.703 times (HD17O) relative to HD18O, respectively. The relative clumping strength decreases with increasing temperature, and therefore, has potential for a novel paleo-temperature proxy. The current calculation results highlight the first theoretical study to establish the nature of clumped isotope fractions in H2O including 17O and tritium. The current results help to account for diverse geochemical processes in earth's surface environments. Future efforts include the calculations of isotope fractionations among various phases of H2O isotopologues with a full consideration of the effect of anharmonicity in molecular vibration.

A Study on Web-based Technology Valuation System (웹기반 지능형 기술가치평가 시스템에 관한 연구)

  • Sung, Tae-Eung;Jun, Seung-Pyo;Kim, Sang-Gook;Park, Hyun-Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.23-46
    • /
    • 2017
  • Although there have been cases of evaluating the value of specific companies or projects which have centralized on developed countries in North America and Europe from the early 2000s, the system and methodology for estimating the economic value of individual technologies or patents has been activated on and on. Of course, there exist several online systems that qualitatively evaluate the technology's grade or the patent rating of the technology to be evaluated, as in 'KTRS' of the KIBO and 'SMART 3.1' of the Korea Invention Promotion Association. However, a web-based technology valuation system, referred to as 'STAR-Value system' that calculates the quantitative values of the subject technology for various purposes such as business feasibility analysis, investment attraction, tax/litigation, etc., has been officially opened and recently spreading. In this study, we introduce the type of methodology and evaluation model, reference information supporting these theories, and how database associated are utilized, focusing various modules and frameworks embedded in STAR-Value system. In particular, there are six valuation methods, including the discounted cash flow method (DCF), which is a representative one based on the income approach that anticipates future economic income to be valued at present, and the relief-from-royalty method, which calculates the present value of royalties' where we consider the contribution of the subject technology towards the business value created as the royalty rate. We look at how models and related support information (technology life, corporate (business) financial information, discount rate, industrial technology factors, etc.) can be used and linked in a intelligent manner. Based on the classification of information such as International Patent Classification (IPC) or Korea Standard Industry Classification (KSIC) for technology to be evaluated, the STAR-Value system automatically returns meta data such as technology cycle time (TCT), sales growth rate and profitability data of similar company or industry sector, weighted average cost of capital (WACC), indices of industrial technology factors, etc., and apply adjustment factors to them, so that the result of technology value calculation has high reliability and objectivity. Furthermore, if the information on the potential market size of the target technology and the market share of the commercialization subject refers to data-driven information, or if the estimated value range of similar technologies by industry sector is provided from the evaluation cases which are already completed and accumulated in database, the STAR-Value is anticipated that it will enable to present highly accurate value range in real time by intelligently linking various support modules. Including the explanation of the various valuation models and relevant primary variables as presented in this paper, the STAR-Value system intends to utilize more systematically and in a data-driven way by supporting the optimal model selection guideline module, intelligent technology value range reasoning module, and similar company selection based market share prediction module, etc. In addition, the research on the development and intelligence of the web-based STAR-Value system is significant in that it widely spread the web-based system that can be used in the validation and application to practices of the theoretical feasibility of the technology valuation field, and it is expected that it could be utilized in various fields of technology commercialization.