• Title/Summary/Keyword: theoretical calculation

Search Result 842, Processing Time 0.033 seconds

Theoretical Studies on Mechanism and Kinetics of the Hydrogen-Abstraction Reaction of CF3CH2CHO with OH Radicals

  • Ci, Cheng-Gang;Yu, Hong-Bo;Wan, Su-Qin;Liu, Jing-Yao;Sun, Chia-Chung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1187-1194
    • /
    • 2011
  • The hydrogen abstraction reaction of $CF_3CH_2CHO$ + OH has been studied theoretically by dual-level direct dynamics method. Two stable conformers, trans- and cis-$CF_3CH_2CHO$, have been located, and there are four distinct OH hydrogen-abstraction channels from t-$CF_3CH_2CHO$ and two channels from c-$CF_3CH_2CHO$. The required potential energy surface information for the kinetic calculation was obtained at the MCG3-MPWB//M06-2X/aug-cc-pVDZ level. The rate constants, which were calculated using improved canonical transitionstate theory with small-curvature tunneling correction (ICVT/SCT) were fitted by a four-parameter Arrhenius equation. It is shown that the reaction proceeds predominantly via the H-abstraction from the -CHO group over the temperature range 200-2000 K. The calculated rate constants were in good agreement with the experimental data between 263 and 358 K.

Studies on T-Shaped composite columns consist of multi separate concrete-filled square tubular steel sections under eccentric axial load

  • Rong, Bin;You, Guangchao;Zhang, Ruoyu;Feng, Changxi;Liu, Rui
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.217-234
    • /
    • 2016
  • In order to investigate mechanical properties and load-bearing capacity of T-shaped Concrete-Filled Square Steel Tubular (TCFST) composite columns under eccentric axial load, three T-shaped composite columns were tested under eccentric compression. Experimental results show that failure mode of the columns under eccentric compression was bending buckling of the whole specimen, and mono column performs flexural buckling. Specimens behaved good ductility and load-bearing capacity. Nonlinear finite element analysis was also employed in this investigation. The failure mode, the load-displacement curve and the ultimate bearing capacity of the finite element analysis are in good agreement with the experimental ones. Based on eccentric compression test and parametric finite element analysis, the calculation formula for the equivalent slenderness ratio was proposed and the bearing capacity of TCFST composite columns under eccentric compression was calculated. Results of theoretical calculation, parametric finite element analysis and eccentric compression experiment accord well with each other, which indicates that the theoretical calculation method of the bearing capacity is advisable.

The Model and Experiment for Heat Transfer Characteristics of Nanoporous Silica Aerogel

  • Mingliang, Zheng
    • Korean Journal of Materials Research
    • /
    • v.30 no.4
    • /
    • pp.155-159
    • /
    • 2020
  • Nanoporous silica aerogel insulation material is both lightweight and efficient; it has important value in the fields of aerospace, petrochemicals, electric metallurgy, shipbuilding, precision instruments, and so on. A theoretical calculation model and experimental measurement of equivalent thermal conductivity for nanoporous silica aerogel insulation material are introduced in this paper. The heat transfer characteristics and thermal insulation principle of aerogel nano are analyzed. The methods of SiO2 aerogel production are compared. The pressure range of SiO2 aerogel is 1Pa-atmospheric pressure; the temperature range is room temperature-900K. The pore diameter range of particle SiO2 aerogel is about 5 to 100 nm, and the average pore diameter range of about 20 ~ 40 nm. These results show that experimental measurements are in good agreement with theoretical calculation values. For nanoporous silica aerogel insulation material, the heat transfer calculation method suitable for nanotechnology can precisely calculate the equivalent thermal conductivity of aerogel nano insulation materials. The network structure is the reason why the thermal conductivity of the aerogel is very low. Heat transfer of materials is mainly realized by convection, radiation, and heat transfer. Therefore, the thermal conductivity of the heat transfer path in aerogel can be reduced by nanotechnology.

Performance Evaluations of a Residential Small Multi-Refrigeration System Considering the Adiabatic Characteristics (단열 특성을 고려한 가정용 소형 멀티 냉동시스템의 성능에 관한 연구)

  • Lee, Moo-Yeon;Lee, Dong-Yeon;Joo, Young-Ju;Kim, Sang-Uk;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.868-875
    • /
    • 2007
  • In this paper, performance characteristics of a domestic kim-chi refrigerator are predicted by using the theoretical calculation and experimental method. The objective of this study is to find out the best design points of the refrigeration system and to calculate an adiabatic characteristic with variation to outdoor temperatures. The best design points such as refrigerant charge amount and capillary length were experimentally investigated. And the theoretical calculation is conducted as a function of calculation parameters and outdoor temperatures. According to this study results, the best design points of a refrigeration system with 2 rooms are 95 g of a refrigerant charge amount and 3500 / 3500 mm of capillary lengths and the best design points of a refrigeration system with 3 rooms are 100 g of a refrigerant charge amount and 3000/3000/6000mm of capillary lengths. And the power consumptions of both systems are 13.57 and 18.2 kWh/month. The worst part of heat loss is a front side of a domestic kim-chi refrigerator body.

A Study on the Nozzle Flow in the Sub-scale High-Altitude Test (축소형 고공환경모사 시험에서의 노즐 유동에 관한 연구)

  • Choi, Jiseon;Lee, Seongmin;Lee, Heejune;Ko, Youngsung;Kim, Seonjin;Lee, Jungmin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1011-1015
    • /
    • 2017
  • In this study, numerical and experimental studies on the nozzle flow in a sub-scale cold flow test were conducted to simulate high altitude condition. In the theoretical calculation, the temperature of the nozzle outlet is calculated to be lower than the liquefaction point, and the fluid exists at the phase change point. Also, numerical analysis result is higher than theory calculation but lower than liquefaction temperature. As a result of cold flow test, it was confirmed that the temperature was much higher than theory and analysis. This is because it assumed that it is adiabatic in the theoretical calculation, but the experiment in the actual environment is not the adiabatic but the heat exchange with the outside exists.

  • PDF

Study on the Effect of the Impeller Diameter on the Performance of a Mixed-flow Pump (임펠러 외경 변경에 따른 사류펌프의 성능변화에 관한 연구)

  • Lee, Heon-Deok;Heo, Hyo-Weon;Suh, Yong-Kweon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.61-66
    • /
    • 2012
  • Nowadays, precise prediction of the pump performance becomes more important than ever before in high-value industries such as power plants and large ships. The power consumed in such pumps of large head and capacity definitely affects the efficiency of the entire system. In this study, we report the theoretical and CFD results used in prediction of the performance change caused by the reduction of impeller diameter. We have found that the theoretical calculation is somehow useful at least in estimating the very beginning condition for the CFD main calculation.

Characteristics Analysis of the Hydraulic Motor Design Variables (유압모터의 설계변수에 대한 특성 검토)

  • Liu, Liang-Liang;Jang, Joosup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.188-194
    • /
    • 2013
  • Hydrostatic pumps and motors occupy an important position in hydraulic system. There are a lot of researches on characteristics of hydraulic pumps, but not hydraulic motors. So in order to know the characteristics of hydraulic motors we had this research. The purpose of this study is to derive and analyze the theoretical calculation of hydraulic axial piston motor torque and torque ripples. Then, analyzed the differences between torque ripples with dead place and without dead place on the valve plate, and modeling a hydraulic motor with AMESim software. Finally, theoretical calculation of hydraulic motor torque ripples was verified from the viewpoint of simulation.

An Analytical Slip Factor Based on a Relative Eddy Size Model for Centrifugal Impellers (遠心 임펠러의 相對 渦流 크기 모델에 根據한 이론적인 미끄럼 係數)

  • Paeng, Kee-Seok;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.411-418
    • /
    • 2000
  • By calculating the location and size of the relative eddy formed in the rotating impellers with the logarithmic spiral vanes, a new simple but accurate slip factor is analytically derived. The proposed slip factor depends on only one parameter that is a function of the number of vanes and the vane exit angle. Predicted slip factor for various cases are compared with those estimated by a number of previous slip factors as well as a recent theoretical calculation by Visser et al. ( JFM, Vol. 268, pp. 107-141, 1994). It is found that the present slip factor yields almost similar results to Wiesner's which has been empirically formulated based on the theoretical calculation of Busemann.

Calculation of Impact Forces of an Arbitrary Force Applied Vibro-Impact system (임의 하중이 작용하는 진동-충격시스템에서의 충격력계산)

  • 이창희
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.679-685
    • /
    • 2000
  • A procedure is presented for calculating the magnitude and shape of impact pulses in a vibro-impact system when an arbitrary input force is applied to a point in the system. The procedure utilizes the condition that the displacements of two contacting point in the primary and secondary system are the same during a contacting period. The displacements of those points are calculated numerically through the convolution integral which involve the impulse response functions and applied forces. The validity of the calculation procedure is demonstrated by using it to calculated the impact forces of a simple system where a theoretical solution is known and also of systems for which other researchers have published results. The agreement between the results derived by the numerical method and the theoretical and also some published results is good.

  • PDF

Theoretical Approach to Calculating rms-Velocity Gradient in Flocculators (응집지 속도경사(G) 계산에 대한 이론적인 고찰)

  • Kim, Ja-Kyum
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.351-356
    • /
    • 2004
  • Selecting appropriate G values in flocculator operation is important to produce high quality filter effluent in water treatment plants. However, misunderstanding and misleading of G calculation for the case of having power sources more than one or many paddles with one power source in a flocculation basin sometimes have led to low performance in flocculation. Theoretical analysis confirmed that the total G value in one flocculation unit having power sources more than one or with many paddles is the root-square of the sum of square of individual G value. This analysis also can give a simple calculation method of G value for designers and operators in fields.