• Title/Summary/Keyword: the vertical motion

Search Result 1,130, Processing Time 0.031 seconds

Dynamic Stability of Pipes Conveying Fluid with Spring Supports (유동유체에 의한 복수 스프링 지지된 파이프의 동적안정성)

  • 류봉조;정승호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1202-1206
    • /
    • 2001
  • The paper presents the dynamic stability of a vertical cantilevered pipe conveying fluid and having translational linear spring supports. Real pipe systems may have some elastic hanger supports or other mechanical attached parts., which can be regarded as attached spring supports. Governing equations are derived by energy expressions, and numerical technique using Galerkin's method is applied to discretize the equations of small motion of the pipe. Effects of spring supports on the dynamic stability of a vertical cantilevered pipe conveying fluid are fully investigated for various locations and spring constants of elastic supports.

  • PDF

A Study on Short-Take-Off and Vertical Landing (STOVL) Performance Evaluation of a Light Aircraft Carrier and a Consistent Analysis of Safe Operating Envelope (SOE) (경항공모함 이·착함 성능평가 및 안전임무 수행범주 일관 해석 연구)

  • Sa Young Hong;Dong-Min Park;Jae Hwan Jung;Min-Guk Seo;Seok-Kyu Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.2
    • /
    • pp.125-134
    • /
    • 2024
  • The Safe Operating Envelope (SOE) combined with Short-Take-Off and Vertical Landing (STOVL) performance is an essential consideration of a light aircraft carrier for design of hull shape with excellent seakeeping performance in terms of naval air operations as well as traditional naval ship missions such as Transit and Patrol (TAP), and Replenishment at Sea (RAS) and so on. A variety of procedures are systematically combined to determine SOE considering rather complicated missions associated with operation of aircraft onboard. The evaluation of take-off and landing safety missions onboard should consider wind effect on deck and severer seakeeping indices and standards compared with conventional naval ships. In order to support take-off and landing missions, various support activities of the crews are required. So, additional evaluation is needed for indicators such as MSI(Motion sickness Index) and MII(Motion Induced Interruptions), which are quantitative indicators of work ability that appear as a result of motion response. In this study, a standard procedure is developed including the seaworthiness performance indicators, standards, and evaluation procedures that should be considered during design of STOVL aircraft carrier. Analysis results are discussed in terns of air-wake on deck as well as seakeeping indices associated with design parameter changes in view of conceptual design of a light aircraft carrier.

Effects of strong ground motions of near source earthquakes on response of thin-walled L-shaped steel bridge piers

  • Xie, Guanmo;Taniguchi, Takeo;Chouw, Nawawi
    • Structural Engineering and Mechanics
    • /
    • v.12 no.3
    • /
    • pp.341-346
    • /
    • 2001
  • Near source earthquakes can be characterized not only by strong horizontal but also by strong vertical ground motions with broad range of dominant frequencies. The inelastic horizontal response of thin-walled L-shaped steel bridge piers, which are popularly used as highway bridge supports, subjected to simultaneous horizontal and vertical ground excitations of near source earthquakes is investigated. A comprehensive damage index and an evolutionary-degrading hysteretic model are applied. Numerical analysis reveals that the strong vertical excitation of a near source earthquake exerts considerable influences on the damage development and horizontal response of thin-walled L-shaped steel bridge piers.

COMPUTATION OF ADDED MASS AND DAMPING COEFFICIENTS DUE TO A HEAVING CYLINDER

  • Bhatta Dambaru D.
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.127-140
    • /
    • 2007
  • We present the boundary value problem (BVP) for the heave motion due to a vertical circular cylinder in water of finite depth. The BVP is presented in terms of velocity potential function. The velocity potential is obtained by considering two regions, namely, interior region and exterior region. The solutions for these two regions are obtained by the method of separation of variables. The analytical expressions for the hydrodynamic coefficients are derived. Computational results are presented for various depth to radius and draft to radius ratios.

A Study on the modeling for the control of magnetic levitation stage (자기부상 스테이지의 제어를 위한 모델링에 관한 연구)

  • 남택근;김용주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.862-871
    • /
    • 2003
  • In this paper, we addressed a modeling for the magnetic levitation stage. This planar magnetic levitator employs four permanent magnet liner motors. Each motor generates vertical force for suspension against gravity, as well as horizontal force for propulsion. Therefore. this stage can generate six degrees of freedom motion by the combination of forces. We derived a mechanical dynamics equation using Lagrangian method and electromechanical dynamics equation by using Co-energy method. Based on the derived dynamics, we can analyze the stage motion that is subject to the input currents and forces.

Study on Effects of Rail Pad Vertical Stiffness by Train/Track Interaction Analysis (차량/궤도 상호작용해석을 통한 레일패드강성 영향 분석)

  • Yang Sin-Chu
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.800-805
    • /
    • 2004
  • In this paper, a numerical method for train/track/structure interaction analysis in frequency domain is developed. Track is modelled as continuous beams supported by elastomers. The motion of train is expressed by those of car body, bogies and unsprung masses supported by springs and dampers. The equation of motion for train and track interaction system is derived by applying compatibility condition at the contact points between wheels and rails. The Effects of rail pad stiffness on the behaviors of train and track are analyzed using the presented method.

  • PDF

Vertical Limb Stiffness Increased with Gait Speed in the Elderly (노인군 보행 속도 증가에 따른 하지 강성 증가)

  • Hong, Hyun-Hwa;Park, Su-Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.687-693
    • /
    • 2011
  • Spring-mass models have been widely accepted to explain the basic dynamics of human gait. Researchers found that the leg stiffness increased with gait speed to increase energy efficiency. However, the difference of leg stiffness change with gait speed between the young and the elderly has not been verified yet. In this study, we calculated the lower limb stiffness of the elderly using walking model with an axial spring. Vertical stiffness was defined as the ratio of the vertical force change to the vertical displacement change. Seven young and eight elderly subjects participated to the test. The subjects walked on a 12 meter long, 1 meter wide walkway at four different gait speeds, ranging from their self-selected speed to maximum speed randomly. Kinetic and kinematic data were collected using three force plates and motion capture cameras, respectively. The vertical stiffness of the two groups increased as a function of walking speed. Maximum walking speed of the elderly was slower than that of the young, yet the walking speed correlated well with the optimal stiffness that maximizes propulsion energy in both groups. The results may imply that human may use apparent limb stiffness to optimize energy based on spring-like leg mechanics.

Task-based adaptive control of redundant manipulators (여유 자유도 매니퓰레이터의 작업공간 적응제어)

  • Nam, Heon-Seong;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.895-901
    • /
    • 1993
  • This paper present controller designs based on the configuration control framework for a redundant manipulator to accomplish the basic task of desired, end-effector motion, while utilizing the redundancy to achieve the additional tasks such as joint motion control, obstacle avoidance, singularity avoidance. etc. A task based decentralized adaptive scheme is then applied for the configuration variables to track some reference trajectories as close as possible. Simulation results for a direct-drive three-link arm in the vertical plane demonstrate its capabilities for performing various useful tasks.

  • PDF

Interaction of burning droplets with internal circulation (내부순환유동을 고려한 연소하는 액적들의 상호작용)

  • Cho, Chong-Pyo;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.183-191
    • /
    • 2004
  • The burning characteristics of interacting droplets with internal circulation in a convective flow are numerically investigated at various Reynolds numbers. The transient combustion of 2-dimensionally arranged droplets, both the fixed droplet distances of 5 radii to 40 radii horizontally and 4 radii to 24 radii vertically, is studied. The results obtained from the present numerical analysis reveal that the transient flame configuration and retardation of droplet internal motion with the horizontal or vertical droplet spacing substantially influence lifetime of interacting droplets. At a low Reynolds number, lifetime of the two droplets with decreasing horizontal droplet spacing increases monotonically, whereas their lifetime with decreasing vertical droplet spacing decreases due to flow acceleration. This flow acceleration effect is reversed when the vertical droplet spacing is smaller than 5 radii in which decreasing flame penetration depth causes the reduction of heat transfer from flame to droplets. At a high Reynolds number, however, lifetime of the first droplet is hardly affected by either the horizontal droplet spacing or flow acceleration effect. Lifetime with decreasing vertical droplet spacing increases due to reduction of flame penetration depth. Lifetime of interacting droplets exhibits a strong dependence on Reynolds number, the horizontal droplet spacing and the vertical droplet spacing and can be con-elated well with these conditions to that of single burning droplet.

  • PDF

Characterization of Elongation Behavior According to Sewing Conditions for Elastic Bands on Woven Fabrics (비신축성 직물의 고무 밴드 봉제 조건에 따른 신장 특성 분석)

  • Eom, Ran-i;Lee, Yejin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.4
    • /
    • pp.648-660
    • /
    • 2021
  • This study analyzes how sewing conditions for elastic bands on woven fabrics affect elongation. The directions of the elastic bands were vertical, horizontal, vertical and horizontal crossing, and horizontal and vertical crossing. Intervals between the elastic bands were 3.0 cm and 6.0 cm. The woven fabric was tailored for the elastic band sewing using warp, weft, and bias. Consequently, it was possible to visually confirm elongation differences according to the sewing condition of the elastic bands. A detailed examination demonstrated that the horizontal or vertical placement of elastic bands tailored in a crosswise direction produces high vertical elongation and low horizontal contraction. However, elastic bands sewed in crossing directions, regardless of warp and weft directions, resulted in both high vertical elongation and high horizontal contraction. In all cases, the more elastic bands were used, the higher the horizontal elongation. In conclusion, appropriate placements of elastic bands on woven fabric increases motion convenience.