• Title/Summary/Keyword: the transient brake time

Search Result 18, Processing Time 0.026 seconds

An Experimental Study of Tire-Road Friction Coefficient by Transient Brake Time (실차 실험을 통한 제동순시간에 의한 타이어-노면마찰계수에 관한 연구)

  • Han, Chang-Pyoung;Park, Kyoung-Suk;Choi, Myung-Jin;Lee, Jong-Sang;Shin, Un-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.7 s.196
    • /
    • pp.106-111
    • /
    • 2007
  • In this paper, the transient brake time was studied on the van type vehicle with accelerometer. Experiments were carried out on the asphalt(new and polished), unpacked road(earth and gravel) and on wet or dry road conditions. The transient brake time is not effected bzy the vehicle speed. The transient brake time is about 0.41$\sim$0.43second on the asphalt road surface and the error range is within 0.1$\sim$0.16second. For the asphalt road condition, the transient brake time is not effected by both new asphalt road surface and the polished asphalt road surface. With compared by dry and wet road surface condition, the transient brake time of wet condition is longer than dry road condition and compared with unpacked road condition and packed road condition, unpacked road condition is shorter than packed road condition. It is considered that the transient brake time is effected by the road surface fraction coefficient. In other words, the transients brake time increases as friction coefficient decreases.

An Estimate of Vehicle Velocity of Braking Starting Point (제동 직전 자동차 주행 속도 추정에 관한 연구)

  • Han, Chang-Pyoung;Park, Kyoung-Suk;Choi, Myung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.174-179
    • /
    • 2007
  • The transient brake time or distance is one of very important factors to guess the vehicle speed to inspect an automobile accident. But, it is usual that the vehicle speed is estimated by using only skid mark without considering the transient brake distance. Deceleration and the friction coefficients of tire and road surface play an important role in calculating the brake distance. In this paper, a scheme is presented to estimate more accurate automobile speed. The scheme contains the effect of the transient brake distance on the speed. Experiment was carried out on the asphalt, unpacked road to get relationships between the speeds and the skid mark distances, and to get the transient brake time. The experimental results were utilized to construct the equation to approximate more realistic vehicle speeds.

Thermo-Elastic Analysis for Chattering Phenomenon of Automotive Disk Brake

  • Cho, Chongdu;Ahn, Sooick
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.569-579
    • /
    • 2001
  • This study investigates the effects of operating conditions on the chattering of an automotive disk brake by experimental and computational methods. Design factors, which cause chattering in automobiles, have attracted great attentions for long time; but they are not well understood yet. For this study, we construct a brake dynamometer for measuring the disk surface temperature during chattering, and propose an efficient hybrid algorithm (combining FFT-FEA and traditional FEA program) for analyzing the thermo-elastic behavior of three-dimensional brake system. We successfully measure the judder in a brake system via the dynamometer and efficiently simulate the contact pressure variation by the hybrid algorithm. The three-dimensional simulation of thermo-mechanical interactions on the automotive brake, showing the transient thermo-elastic instability phenomenon, is presented for the first time in this academic community. We also find from the experimental study that the disk bulk temperature strongly influences the brake chattering in the automotive disk brakes.

  • PDF

Transient Control Analysis of Power System by Dynamic Braking (동적제어에 의한 전력계통의 과도제어 특성 해석)

  • 김준현;설용태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.31 no.11
    • /
    • pp.125-132
    • /
    • 1982
  • This paper analyzes the transient control characteristics of power system by dynamic braking. This method, one type of network switching, employs the injection of controllable shunt resistors at or near the generator bus after the disturbances. First, the power system is simulated mathematically for applying the dynamic braking. And the electrical transient control characteristics are considered by controlling the brake size and insertion time. Second, the mechanical torque of turbine-generator is calculted for the mechanical characteristics. This analysis results show that the electrical characteristics are improved but the turbine-generator shaft is impacted by brake switching. However, these problems can be solved by controlling the brake dynamically.

  • PDF

Influence of the Braking Time on the Soundness of Ventilated Disc Brake Systems (제동시간이 통풍형 디스크 브레이크 시스템의 건전성에 미치는 영향)

  • Gwak, Woo-Gyeong;Hong, Chang-Ki;Kim, Youn-Jea
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.1
    • /
    • pp.7-12
    • /
    • 2016
  • In order to analyze the soundness of ventilated disc brake systems, numerical study was performed with various vane shapes. In particular, two different vane type, and the braking time from 3.0 s to 4.5s with the interval of 0.5s were considered. Transient temperature distributions on the ventilated disc brake assembly were calculated using ANSYS CFX ver. 16.1. To elucidate the soundness of ventilated disc brake systems, moreover, the heat transfer coefficients were evaluated. Results were graphically depicted with different geometrical vane configurations and braking time.

A Study on the Thermal Behavior Characteristic of Drum Brake considering Braking Patterns (제동 패턴을 고려한 드럼 브레이크의 열적 거동 특성에 대한 연구)

  • Lee, Kye-Sub;Son, Sung-Soo;Yang, Ki-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.145-154
    • /
    • 2006
  • Each part of drum brake system is loaded by continual mechanical force and thermal force every time of braking, so enough strength and stability are required. Thermal characteristic is one of the important factors in drum brake systems design. This paper presents the thermal performance such as temperature distribution and thermal contact stress of drum brake system considering several braking patterns; 80th heat braking test mode, heat fade braking test mode, general road mode, steep slope road mode and off road mode. Transient heat transfer analysis and Thermo elastic contact analysis is executed to obtain the temperature distribution, and to evaluate thermal stress of drum brake by using ABAQUS/Standard code. This procedure of analysis can effectively be used to improve the quality problem of brake system and to get design guideline of the new product.

The Experimental Study on the Transient Brake Time of Vehicles by Road Pavement and Friction Coefficient (노면 포장별 차량의 제동경과시간 및 마찰계수에 관한 실험적 연구)

  • Lim, Chang-Sik;Choi, Yang-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6D
    • /
    • pp.587-597
    • /
    • 2010
  • When a car accident occurs, people who had an accident are not free from civil and criminal issues so that the accident investigator should reenact and analyze the accident situation accurately. In addition, the obtained documents through the analysis of such car accident occurrence and related factors have to be used to carry out the improvement of the areas that has numerous car accidents and complementary actions. The vehicle speed, accelerating force, braking power are currently known as the most affecting factors in accordance with many car accidents, traffic facilities, road design, etc. The vehicle's performance and rode friction coefficient road surface friction coefficient are affecting the most closely in this field. Especially, once the estimate of the speed of the accident moment relating to main eleven articles of Traffic Accident Exemption Law is very important and accuracy is required. However, currently the researches of these matters have not made exclusively yet in Korea. In this study by reflecting this current situation, until the sudden braking history is found from the car's sudden braking, it estimates accurately the transient brake time and rode friction coefficient by measuring a time of transient brake time through the precision speed detector (Vericom VC2000PC). The analysis of the experimental results calculated the transient brake time and friction coefficient to fit into the purpose of this study in the basis of different kind of various special purpose asphalt pavement and slip-prevention pavement and provided the fundamental data.

A Study on the Vehicle Dynamic Characteristics Considering Powertrain and Brake Systems (동력전달계와 제동계를 고려한 차량의 운동 특성에 관한 연구)

  • Bae, Sang-Woo;Lee, Chi-Bum;Yun, Jung-Rak;Lee, Jang-Moo;Tak, Tae-Oh
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.684-689
    • /
    • 2000
  • In this paper, the equations of motion about vehicle, powertrain and brake system were derived. The vehicle has eight degrees of freedom with nonlinear tire model and the powertrain has two degrees of freedom containing engine, torque converter and four speed automatic transmission. The brake system has two states about front and rear brake line pressures. The transient tire model with first order time lag is also subjoined for low speed or stop-and-go simulation. The modeling was derived considering two points - the fidelity and the simplicity. The simulation using this model is similar with real vehicle dynamic behavior and the model is made as simple as possible far fast simulation. It is validated that the derived vehicle model can be applicable to the real time simulation.

  • PDF

A Study on Acceleration of Transient Brake Section and Skidding Section (불완전 제동구간과 활주구간의 감속도 변화에 대한 연구)

  • Kim, Kil Bae;Jung, Woo Teak;Ryu, Tae Sun;Oh, Young Tae
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.5
    • /
    • pp.83-90
    • /
    • 2012
  • Driver ordinarily takes sudden braking when urgent situation is developed or when the vehicle is involved in an unexpected accident. Therefore, the most common trace at a traffic accident scene is skid mark. Currently, in investigating traffic accident, overspeed is determined by the length of skid mark. However, in order to identify accurate cause of accident, estimation of pre-braking speed which takes into account speed reduction during transient time should be considered as a requirement. In a recent study, several ways to estimate pre-braking speed were suggested, but none considered to differentiate the decelerating transient brake section and skidding section. This study analyzed trends of decelerating transient brake section and skidding section by real braking test.

Transient Thermoelnstic Analysis of Disk Brakes Using Finite Element Method (유한요소법을 이용한 디스크 브레이크의 과도기 열탄성 해석)

  • Choi, Ji-Hoon;Kim, Do-Hyung;Lee, In;Cha, Hee-Bum;Kang, Min-Gu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.160-167
    • /
    • 2002
  • The transient thermoelastic analysis of automotive disk brakes with frictional contact is performed by using the finite element method. To analyze the thermoelastic behaviors occurring in disk brakes, the coupled heat conduction and elastic equations are solved. The fully implicit transient scheme is used to improve the computation accuracy at every time step. The numerical results of the thermoelastic behaviors are obtained during the repeated braking condition. The computational results show that the thermoelastic instability(TEI) phenomenon(the growth of non-uniformities in contact pressure) occurs in disk brakes. Also, the effect of material properties on the thermoelastic behaviors is investigated to facilitate the conceptual design of the brake system.