• Title/Summary/Keyword: the thermal treatment time

Search Result 530, Processing Time 0.032 seconds

The Effect on the Strength According to Carbon Content of Kovar Steel (코바강의 탄소첨가량에 따른 강도에 미치는 영향)

  • Choi, Byung-Hui;Choi, Byung-Ky
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.28-33
    • /
    • 2010
  • Ni alloy steel is able to use during long time because of good acid and corrosion resistance. So, it's research has focused on developing the alternative alloy which is economically feasible. Recently, consumption of Kovar steel is gradually increased in field of the jet engine and the gas turbine because of its low thermal expansive characteristics. The specimens of Kovar steel(29%Ni-17%Co) contain 0.00%C, 0.03%C, 0.06%C, 0.10%C and 0.20%C, respectively. Ingots are manufactured by VIM(vacuum induction melting furnace) and then specimens are made by automatic hot rolling after heat treatment. Strength of Kovar steel according to carbon contents is estimated by hardness, tensile and impact test. Hardness of the 0.20%C specimen is more improved approximately 14.4% than one of base metal. Its strength increases 32.4% of a base metal, and its impact energy is also enhance 11.5%.

Two Cases of Primary Localized Amyloidosis of Larynx (원발성 국소 후두아밀로이드증 2례)

  • 김형태;조승호;전범조;김민식
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.9 no.2
    • /
    • pp.147-151
    • /
    • 1998
  • Primary localized laryngeal amyloidosis is an uncommon disorder of unknown cause that occurs in the absence of systemic amyloidosis or associated disease. There is a risk of either missing concomitant systemic amyloidosis or exhaustively investigating for this when it is not present through failure to appreciate the nature of the disease. We present 2 cases of primary localized laryngeal amyloidosis in supraglottic region. Biopsy of the mass of patients revealed findings consistent with amyloidosis, which were Congo red reaction with a apple green birefringence in polarized light fluorescence microscopy. An extensive workup for systemic amyloidosis was negative. All of two cases were treated by vaporization via $CO_2$ LASER using "Swiftlase Flshscan" for creating a wide, shallow char-free treatment site by precisely controlling ablation depth without causing residual thermal damage to tissue. The postoperative recovery of all cases was uneventful with good vocal quality and no aspiration. At the present time, the patients have no evidence of disease, recurrence and complication.

  • PDF

Manufacturing lightweight aggregate uses high content of sewage sludge for non-structural concrete

  • Phung Trong-Quyen;Kim, Duck-Mo;Mun, Kyoung-Ju;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.124-127
    • /
    • 2003
  • Sewage sludge and clay used as raw materials in the study. Green aggregates contain different contents by dried weight of the sewage sludge, up to 80 percent is manufactured and burning conditions of soak temperature, soak time and rate of temperature increase. influence of burning condition and mixing ratio on specific gravity of burned aggregate are discussed. The appropriate burning condition to all aggregates is evaluated. Aggregates result form the thermal treatment get specific gravity under 0.8, water absorption fewer than 7.5 percent, and aggregate crushing value from 28 to 53. As the result, aggregates can be available as the lightweight aggregate for non-structural concrete.

  • PDF

Preparation of Machinable Ceramics Using Domestic Pyrophyllite (국내산 납석을 이용한 Machinable Ceramics의 제조)

  • 정창주;정회준;양삼열
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.7
    • /
    • pp.531-540
    • /
    • 1991
  • In this study, high quality machinable ceramics was prepared from the K2O-MgO-Al2O3-SiO2-B2O3-F glass system using domestic pyrophyllite. The mixture of pyrophyllite and additives was melted at 1450$^{\circ}C$ for 1 hour and formed in a graphite mold. The base glass was heat-treated at 600$^{\circ}C$ to 1200$^{\circ}C$ with interval of 50$^{\circ}C$ for 3 hours identified by XRD. Crystalline phase were confirmed by XRD and their microstructure was observed by SEM. The glass ceramics which was prepared by heat treatment of base glass at 1150$^{\circ}C$ for short time has good physical, mechanical, thermal, chemical properties and machinability.

  • PDF

Cellular and Molecular Responses of a Filamentous Fungus Neurospora Crassa to Non-thermal Plasma at Atmospheric Pressure

  • Park, Gyung-Soon;Ryu, Young-Hyo;Hong, Young-June;Uhm, Han-Sup;Choi, Eun-H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.476-476
    • /
    • 2012
  • Although plasma is an efficient means of microbial sterilization, mechanism of plasma effect on microorganisms still needs to be clarified. In addition, a limited number of studies are available on eukaryotic microorganisms such as yeast and fungi in relation to plasma application. Thus, we investigated cellular and molecular aspects of plasma effects on a filamentous fungus, Neurospora crassa by making use of argon plasma jet at atmospheric pressure. The viability and cell morphology of N. crassa spores exposed to plasma were both significantly reduced depending on the exposure time when treated in water. The intracellular genomic DNA content was dramatically reduced in fungal tissues after a plasma treatment and the transcription factor tah-3 was found to be required for fungal tolerance to a harsh plasma environment.

  • PDF

Gas sensing characteristics of carbon nanotube gas sensor using a diaphragm structure (다이아프램 구조를 이용한 탄소나노튜브 가스 센서의 가스 감응 특성)

  • Cho, Woo-Sung;Moon, Seung-Il;Kim, Young-Cho;Park, Jung-Ho;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.13-19
    • /
    • 2006
  • The micro-gas sensor based on carbon nanotubes (CNTs) was fabricated and its gas sensing characteristics on nitrogen dioxide ($NO_{2}$) have been investigated. The sensor consists of a heater, an insulating layer, a pair of contact electrodes, and CNT-sensing film on a micromachined diaphragm. The heater plays a role in the temperature change to modify sensor operation. Gas sensor responses of CNT-film to $NO_{2}$ at room temperature are reported. The sensor exhibits a reversible response with a time constant of a few minutes at thermal treatment temperature of $130^{\circ}C$.

An overview of new oxidation methods for polyacrylonitrile-based carbon fibers

  • Shin, Hye Kyoung;Park, Mira;Kim, Hak-Yong;Park, Soo-Jin
    • Carbon letters
    • /
    • v.16 no.1
    • /
    • pp.11-18
    • /
    • 2015
  • The process of oxidizing polyacrylonitrile (PAN)-based carbon fibers converts them into an infusible and non-flammable state prior to carbonization. This represents one of the most important stages in determining the mechanical properties of the final carbon fibers, but the most commonly used methods, such as thermal treatment ($200^{\circ}C$ to $300^{\circ}C$), tend to waste a great deal of process time, money, and energy. There is therefore a need to develop more advanced oxidation methods for PAN precursor fibers. In this review, we assess the viability of electron beam, gamma-ray, ultra-violet, and plasma treatments with a view to advancing these areas of research and their industrial application.

Pulsed laser surface modification for heat treatment and nano-texturing on biometal surface

  • Jeon, Hojeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.118.1-118.1
    • /
    • 2016
  • The laser surface modification has been reported for its functional applications for improving tribological performance, wear resistance, hardness, and corrosion property. In most of these applications, continuous wave lasers and pulsed lasers were used for surface melting, cladding, alloying. Since flexibility in processing, refinement of microstructure and controlling the surface properties, technology utilizing lasers has been used in a number of fields. Especially, femtosecond laser has great benefits compared with other lasers because its pulsed width is much shorter than characteristic time of thermal diffusion, which leads to diminish heat affected zone. Moreover, laser surface engineering has been highlighted as an effective tool for micro/nano structuring of materials in the bio application field. In this study, we applied femtosecond and nanosecond pulsed laser to treat biometals, such as Mg, Mg alloy, and NiTi alloy, by heating to improve corrosion properties and functionalize their surface controlling cell response as implantable biomedical devices.

  • PDF

Anti-nociceptive Activity of Methanolic Extract of Caragana sinica (골담초 메탄올 추출물의 진통 효과)

  • Park, Jin Suck;Cha, Dong Seok;Jeon, Hoon
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.1
    • /
    • pp.38-42
    • /
    • 2016
  • Caragana sinica (Leguminosae) is a plant, which has been used as a traditional medicine for the treatment of lots of diseases including neuralgia, goat, hypertension and eczema. However, scientific studies of C. sinica in pharmacological aspects are not carried out. In this study, the anti-nociceptice effect of methanolic extract of C. sinica (MCS) was evaluated using various pain models. Our data represented that MCS significantly delayed the latency time under central pain condition which are arose from thermal stimuli, indicating MCS possess analgesic potential against central nociception. In addition, MCS showed strong and dose-dependent anti-nociceptive activities on acetic acid-induced peripheral pain, compared to positive control such as indomethacin. Further combination studies using naloxone, a non-selective opioid receptor antagonist, have revealed that analgesic activity of MCS was not changed in the presence of naloxone, indicating MCS exerts anti-nociceptive activity independent of opioid receptor. These results suggest that MCS may be an effective medicine in managing pain.

Surface characteristics of thermally treated titanium surfaces

  • Lee, Yang-Jin;Cui, De-Zhe;Jeon, Ha-Ra;Chung, Hyun-Ju;Park, Yeong-Joon;Kim, Ok-Su;Kim, Young-Joon
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.3
    • /
    • pp.81-87
    • /
    • 2012
  • Purpose: The characteristics of oxidized titanium (Ti) surfaces varied according to treatment conditions such as duration time and temperature. Thermal oxidation can change Ti surface characteristics, which affect many cellular responses such as cell adhesion, proliferation, and differentiation. Thus, this study was conducted to evaluate the surface characteristics and cell response of thermally treated Ti surfaces. Methods: The samples were divided into 4 groups. Control: machined smooth titanium (Ti-S) was untreated. Group I: Ti-S was treated in a furnace at $300^{\circ}C$ for 30 minutes. Group II: Ti-S was treated at $500^{\circ}C$ for 30 minutes. Group III: Ti-S was treated at $750^{\circ}C$ for 30 minutes. A scanning electron microscope, atomic force microscope, and X-ray diffraction were used to assess surface characteristics and chemical composition. The water contact angle and surface energy were measured to assess physical properties. Results: The titanium dioxide ($TiO_2$) thickness increased as the treatment temperature increased. Additional peaks belonging to rutile $TiO_2$ were only found in group III. The contact angle in group III was significantly lower than any of the other groups. The surface energy significantly increased as the treatment temperature increased, especially in group III. In the 3-(4,5-Dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide assay, after 24 hours of incubation, the assessment of cell viability showed that the optical density of the control had a higher tendency than any other group, but there was no significant difference. However, the alkaline phosphatase activity increased as the temperature increased, especially in group III. Conclusions: Consequently, the surface characteristics and biocompatibility increased as the temperature increased. This indicates that surface modification by thermal treatment could be another useful method for medical and dental implants.