Browse > Article
http://dx.doi.org/10.5714/CL.2015.16.1.011

An overview of new oxidation methods for polyacrylonitrile-based carbon fibers  

Shin, Hye Kyoung (Department of Chemistry, Inha University)
Park, Mira (Department of Organic Materials and Fiber Engineering, Chonbuk National University)
Kim, Hak-Yong (Department of Organic Materials and Fiber Engineering, Chonbuk National University)
Park, Soo-Jin (Department of Chemistry, Inha University)
Publication Information
Carbon letters / v.16, no.1, 2015 , pp. 11-18 More about this Journal
Abstract
The process of oxidizing polyacrylonitrile (PAN)-based carbon fibers converts them into an infusible and non-flammable state prior to carbonization. This represents one of the most important stages in determining the mechanical properties of the final carbon fibers, but the most commonly used methods, such as thermal treatment ($200^{\circ}C$ to $300^{\circ}C$), tend to waste a great deal of process time, money, and energy. There is therefore a need to develop more advanced oxidation methods for PAN precursor fibers. In this review, we assess the viability of electron beam, gamma-ray, ultra-violet, and plasma treatments with a view to advancing these areas of research and their industrial application.
Keywords
carbon fibers; polyacrylonitrile; electron beam; gamma-ray; ultra-violet; plasma;
Citations & Related Records
Times Cited By KSCI : 17  (Citation Analysis)
연도 인용수 순위
1 Nishi Y, Sato H, Iwata K, Nishi Y, Iwata K. Effects of homogeneous irradiation of electron beam with low potential on adhesive strength of polymethyl methacrylate composite sheet covered with nylon-6 film. J Mater Res, 24, 3503 (2009). http://dx.doi.org/doi:10.1557/jmr.2009.0429.   DOI
2 Shin BS, Seo DK, Kim HB, Jeun JP, Kang PH. A study of the thermal and mechanical properties of electron beam irradiated HDPE/EPDM blends in the presence of triallyl cyanurate. J Ind Eng Chem, 18, 526 (2012). http://dx.doi.org/10.1016/j.jiec.2011.11.025.   DOI
3 Senna MM, Mohamed RM, Shehab-Eldin AN, El-Hamouly S. Characterization of electron beam irradiated natural rubber/modified starch composites. J Ind Eng Chem, 18, 1654 (2012). http://dx.doi.org/10.1016/j.jiec.2012.03.004.   DOI
4 Yoon HJ, Kim SE, Kwon YK, Kim EJ, Lee JC, Lee YS. Synthesis of silver nanostructures on polytetrafluoroethylene (PTFE) using electron beam irradiation for antimicrobacterial effect. J Ind Eng Chem, 18, 586 (2012). http://dx.doi.org/10.1016/j.jiec.2011.10.007.   DOI
5 Dahal P, Kim YC. Preparation and characterization of modified polypropylene by using electron beam irradiation. J Ind Eng Chem, 19, 1879 (2013). http://dx.doi.org/10.1016/j.jiec.2013.02.027.   DOI
6 Shukushima S, Hayami H, Ito T, Nishimoto S. Modification of radiation cross-linked polypropylene. Radiat Phys Chem, 60, 489 (2001). http://dx.doi.org/10.1016/S0969-806X(00)00395-9.   DOI   ScienceOn
7 Chmielewski AG, Al-Sheikhly M, Berejka AJ, Cleland MR, Antoniak M. Recent developments in the application of electron accelerators for polymer processing. Radiat Phys Chem, 94, 147 (2014). http://dx.doi.org/10.1016/j.radphyschem.2013.06.024.   DOI
8 Kang PH, Jeon YK, Jeun JP, Shin JW, Nho YC. Effect of electron beam irradiation on polyimide film. J Ind Eng Chem, 14, 672 (2008). http://dx.doi.org/10.1016/j.jiec.2008.03.004.   과학기술학회마을   DOI
9 An JC. Synthesis of the combined inter- and intra-crosslinked nanohydrogels by e-beam ionizing radiation. J Ind Eng Chem, 16, 657 (2010). http://dx.doi.org/10.1016/j.jiec.2010.05.013.   과학기술학회마을   DOI
10 Miao P, Wu D, Zeng K, Xu G, Zhao Ce, Yang G. Influence of electron beam pre-irradiation on the thermal behaviors of polyacrylonitrile. Polym Degradation Stab, 95, 1665 (2010). http://dx.doi.org/10.1016/j.polymdegradstab.2010.05.028.   DOI   ScienceOn
11 Park M, Pant B, Choi J, Park YW, Lee C, Shin HK, Park SJ, Kim HY. Facile preparation of self-assembled wool-based graphene hydrogels by electron beam irradiation. Carbon Lett, 15, 136 (2014). http://dx.doi.org/10.5714/CL.2014.15.2.136.   과학기술학회마을   DOI
12 Shin HK, Pyo Jeun J, Bin Kim H, Hyun Kang P. Isolation of cellulose fibers from kenaf using electron beam. Radiat Phys Chem, 81, 936 (2012). http://dx.doi.org/10.1016/j.radphyschem.2011.10.010.   DOI
13 Park M, Shin HK, Kim BS, Pant B, Barakat NAM, Kim HY. Facile preparation of graphene induced from electron-beam irradiated graphite. Mater Lett, 105, 236 (2013). http://dx.doi.org/10.1016/j.matlet.2013.04.027.   DOI   ScienceOn
14 Liu Y, Park M, Shin HK, Pant B, Park SJ, Kim HY. Preparation and characterization of chitosan-based nanofibers by ecofriendly electrospinning. Mater Lett, 132, 23 (2014). http://dx.doi.org/10.1016/j.matlet.2014.06.041.   DOI
15 Siraj K, Khaleeq-ur-Rahman M, Rafique MS, Nawaz T. Effect of 4MeV electron beam irradiation on carbon films. Nucl Instr Method Phys Res B, 269, 53 (2011). http://dx.doi.org/10.1016/j.nimb.2010.09.022.   DOI
16 Allen JT, Calhoun R, Helm J, Kruger S, Lee C, Mendonsa R, Meyer S, Pageau G, Shaffer H, Whitham K, Williams CB, Farrell JP. A fully integrated 10 MeV electron beam sterilization system. Radiat Phys Chem, 46, 457 (1995). http://dx.doi.org/10.1016/0969-806X(95)00193-2.   DOI
17 Shin H-S, Kim YR, Han B, Makarov IE, Ponomarev AV, Pikaev AK. Application of electron beam to treatment of wastewater from papermill. Radiat Phys Chem, 65, 539 (2002). http://dx.doi.org/10.1016/S0969-806X(02)00348-1.   DOI
18 Supriya P, Sridhar KR, Ganesh S. Fungal decontamination and enhancement of shelf life of edible split beans of wild legume Canavalia maritima by the electron beam irradiation. Radiat Phys Chem, 96, 5 (2014). http://dx.doi.org/10.1016/j.radphyschem.2013.08.007.   DOI
19 Danmark S, Finne-Wistrand A, Schander K, Hakkarainen M, Arvidson K, Mustafa K, Albertsson AC. In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization. Acta Biomater, 7, 2035 (2011). http://dx.doi.org/10.1016/j.actbio.2011.02.011.   DOI
20 Odelius K, Plikk P, Albertsson AC. The influence of composition of porous copolyester scaffolds on reactions induced by irradiation sterilization. Biomaterials, 29, 129 (2008). http://dx.doi.org/10.1016/j.biomaterials.2007.08.046.   DOI
21 Luan S, Shi H, Yao Z, Wang J, Song Y, Yin J. Effect of electron beam irradiation sterilization on the biomedical poly (octene-coethylene)/ polypropylene films. Nucl Instr Method Phys Res B, 268, 1474 (2010). http://dx.doi.org/10.1016/j.nimb.2010.01.014.   DOI
22 Auslender VL, Bryazgin AA, Voronin LA, Polyakov VA, Grodetskiy VP, Izhboldin IK, Mirsaetov OM, Petrov AM, Obidin YT, Ponomaryov VN. Automated technological radiation installation for sterilization of medical goods. Radiat Phys Chem, 52, 459 (1998). http://dx.doi.org/10.1016/S0969-806X(98)00051-6.   DOI
23 Sampa MHO, Rela PR, Casas AL, Mori MN, Duarte CL. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon: a comparative study. Radiat Phys Chem, 71, 459 (2004). http://dx.doi.org/10.1016/j.radphyschem.2004.03.023.   DOI
24 Zhang M, Zhu R, Zhang M, Gao B, Sun D, Wang S. High-energy pulse-electron-beam-induced molecular and cellular damage in Saccharomyces cerevisiae. Res Microbiol, 164, 100 (2013). http://dx.doi.org/10.1016/j.resmic.2012.10.023.   DOI
25 Park W, Hwang MH, Kim TH, Lee MJ, Kim IS. Enhancement in characteristics of sewage sludge and anaerobic treatability by electron beam pre-treatment. Radiat Phys Chem, 78, 124 (2009). http://dx.doi.org/10.1016/j.radphyschem.2008.09.010.   DOI
26 Ribeiro MA, Sato IM, Duarte CL, Sampa MHO, Salvador VLR, Scapin MA. Application of the electron-beam treatment for Ca, Si, P, Al, Fe, Cr, Zn, Co, As, Se, Cd and Hg removal in the simulated and actual industrial effluents. Radiat Phys Chem, 71, 425 (2004). http://dx.doi.org/10.1016/j.radphyschem.2004.03.017.   DOI
27 Duarte CL, Sampa MHO, Rela PR, Oikawa H, Cherbakian EH, Sena HC, Abe H, Sciani V. Application of electron beam irradiation combined to conventional treatment to treat industrial effluents. Radiat Phys Chem, 57, 513 (2000). http://dx.doi.org/10.1016/S0969-806X(99)00453-3.   DOI
28 Sampa MHO, Duarte CL, Rela PR, Somessari ESR, Silveira CG, Azevedo AL. Remotion of organic compounds of actual industrial effluents by electron beam irradiation. Radiat Phys Chem, 52, 365 (1998). http://dx.doi.org/10.1016/S0969-806X(98)00035-8.   DOI
29 Duarte CL, Geraldo LL, Junior OdAP, Borrely SI, Sato IM, Sampa MHdO. Treatment of effluents from petroleum production by electron beam irradiation. Radiat Phys Chem, 71, 445 (2004). http://dx.doi.org/10.1016/j.radphyschem.2004.03.021.   DOI
30 Moraes MCF, Romanelli MF, Sena HC, Pasqualini da Silva G, Sampa MHO, Borrely SI. Whole acute toxicity removal from industrial and domestic effluents treated by electron beam radiation: emphasis on anionic surfactants. Radiat Phys Chem, 71, 463 (2004). http://dx.doi.org/10.1016/j.radphyschem.2004.03.022.   DOI
31 Borrely SI, Gonçalves AA, Oikawa H, Duarte CL, Rocha FR. Electron beam accelerator for detoxification of effluents. When radiation processing can enhance the acute toxicity? Radiat Phys Chem, 71, 455 (2004). http://dx.doi.org/10.1016/j.radphyschem.2004.03.087.   DOI
32 Han B, Kyu Kim J, Kim Y, Seung Choi J, Young Jeong K. Operation of industrial-scale electron beam wastewater treatment plant. Radiat Phys Chem, 81, 1475 (2012). http://dx.doi.org/10.1016/j.radphyschem.2012.01.030.   DOI
33 Kim YH, Choi SJ, Park HJ, Lee JH. Electron beam-induced mutants of microalgae Arthrospira platensis increased antioxidant activity. J Ind Eng Chem, 20, 1834 (2014). http://dx.doi.org/10.1016/j.jiec.2013.08.039.   DOI
34 Katial RK, Grier TJ, Hazelhurst DM, Hershey J, Engler RJ. Deleterious effects of electron beam radiation on allergen extracts. J Allergy Clin Immunol, 110, 215 (2002). http://dx.doi.org/10.1067/mai.2002.126377.   DOI
35 Lim SJ, Kim TH, Lee SH, Kim JY, Kim SK. Effects of electron beam irradiation and temperature on the treatment of swine wastewater using an ion exchange biological reactor. Bioresour Technol, 137, 233 (2013). http://dx.doi.org/10.1016/j.biortech.2013.03.083.   DOI
36 Lozada-Castro JJ, Gil-Díaz M, Santos-Delgado MJ, Rubio-Barroso S, Polo-Diez LM. Effect of electron-beam irradiation on cholesterol oxide formation in different ready-to-eat foods. Innov Food Sci Emerg Technol, 12, 519 (2011). http://dx.doi.org/10.1016/j.ifset.2011.07.005.   DOI
37 Martin DI, Margaritescu I, Cirstea E, Togoe I, Ighigeanu D, Nemtanu MR, Oproiu C, Iacob N. Application of accelerated electron beam and microwave irradiation to biological waste treatment. Vacuum, 77, 501 (2005). http://dx.doi.org/10.1016/j.vacuum.2004.09.019.   DOI
38 Ramathilaga A, Murugesan AG. Effect of electron beam irradiation on proximate, microbiological and sensory characteristics of chyavanaprash: ayurvedic poly herbal formulation. Innov Food Sci Emerg Technol, 12, 515 (2011). http://dx.doi.org/10.1016/j.ifset.2011.06.004.   DOI
39 Rivadeneira R, Moreira R, Kim J, Castell-Perez ME. Dose mapping of complex-shaped foods using electron-beam accelerators. Food Control, 18, 1223 (2007). http://dx.doi.org/10.1016/j.foodcont.2006.07.023.   DOI
40 Al-Farisi M, Abuagla A, Mohamed E, Gohs U. The effect of electron beam on dates infestation. Food Control, 33, 157 (2013). http://dx.doi.org/10.1016/j.foodcont.2013.02.029.   DOI   ScienceOn
41 Shin H, Jeun J, Kang P. The characterization of polyacrylonitrile fibers stabilized by electron beam irradiation. Fiber Polym, 13, 724 (2012). http://dx.doi.org/10.1007/s12221-012-0724-5.   과학기술학회마을   DOI   ScienceOn
42 Shin HK, Park M, Kang PH, Choi HS, Park SJ. Preparation and characterization of polyacrylonitrile-based carbon fibers produced by electron beam irradiation pretreatment. J Ind Eng Chem, 20, 3789 (2014). http://dx.doi.org/10.1016/j.jiec.2013.12.080.   DOI
43 Kim DY, Shin HK, Jeun JP, Kim HB, Oh SH, Kang PH. Characterization of polyacrylonitrile based carbon nanofiber mats via electron beam processing. J Nanosci Nanotechnol, 12, 6120 (2012). http://dx.doi.org/10.1166/jnn.2012.6346.   DOI
44 Igartua M, Hernandez RM, Rosas JE, Patarroyo ME, Pedraz JL. Gamma-irradiation effects on biopharmaceutical properties of PLGA microspheres loaded with SPf66 synthetic vaccine. Eur J Pharm Biopharm, 69, 519 (2008). http://dx.doi.org/10.1016/j.ejpb.2007.12.014.   DOI
45 Choi Y, Park M, Shin HK, Liu Y, Choi JW, Nirmala R, Park SJ, Kim HY. Facile stabilization process of polyacrylonitrile-based electrospun nanofibers by spraying 1% hydrogen peroxide and electron beam irradiation. Mater Lett, 123, 59 (2014). http://dx.doi.org/10.1016/j.matlet.2014.03.020.   DOI
46 Razem D, Katusin-Razem B. The effects of irradiation on controlled drug delivery/controlled drug release systems. Radiat Phys Chem, 77, 288 (2008). http://dx.doi.org/10.1016/j.radphyschem.2007.06.006.   DOI
47 Williams HE, Huxley J, Claybourn M, Booth J, Hobbs M, Meehan E, Clark B. The effect of $\gamma$-irradiation and polymer composition on the stability of PLG polymer and microspheres. Polym Degradation Stab, 91, 2171 (2006). http://dx.doi.org/10.1016/j.polymdegradstab.2006.01.006.   DOI
48 Tan L, Wan A. Structural changes of polyacrylonitrile precursor fiber induced by $\gamma$-ray irradiation. Mater Lett, 65, 3109 (2011). http://dx.doi.org/10.1016/j.matlet.2011.06.090.   DOI
49 Liu W, Wang M, Xing Z, Qi Y, Wu G. Radiation-induced crosslinking of polyacrylonitrile fibers and the subsequent regulative effect on the preoxidation process. Radiat Phys Chem, 81, 622 (2012). http://dx.doi.org/10.1016/j.radphyschem.2012.02.029.   DOI
50 Liu W, Wang M, Xing Z, Wu G. Radiation oxidation and subsequent thermal curing of polyacrylonitrile fiber. Radiat Phys Chem, 94, 9 (2014). http://dx.doi.org/10.1016/j.radphyschem.2013.06.015.   DOI
51 Cowd MA. Polymer Chemistry, Murray, London (1982).
52 Paiva MC, Kotasthane P, Edie DD, Ogale AA. UV stabilization route for melt-processible PAN-based carbon fibers. Carbon, 41, 1399 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00041-1.   DOI
53 Kuleznev VN, Shershnev VA. The Chemistry and Physics of Polymers, Mir Publishers, Moscow (1990).
54 Fouda IM, Shabana HM, El-Sharkawy FM. Changes in orientation caused by UV irradiation of nylon 6 fibers. J Appl Polym Sci, 88, 3202 (2003). http://dx.doi.org/10.1002/app.12063.   DOI   ScienceOn
55 Nough SA. The effect of UV radiation on the optical properties of cellulose triacetate. Radiat Measur, 27, 499 (1997). http://dx.doi.org/10.1016/S1350-4487(97)00006-1.   DOI
56 Morales MS, Ogale AA. Wet-spun, photoinitiator-modified polyacrylonitrile precursor fibers: UV-assisted stabilization. J Appl Polym Sci, 130, 2494 (2013). http://dx.doi.org/10.1002/app.39442.   DOI
57 Reznickova A, Kolska Z, Hnatowicz V, Stopka P, Svorcik V. Comparison of glow argon plasma-induced surface changes of thermoplastic polymers. Nucl Instr Method Phys Res B, 269, 83 (2011). http://dx.doi.org/10.1016/j.nimb.2010.11.018.   DOI
58 Svorcik V, Kolarova K, Slepicka P, Mackova A, Novotna M, Hnatowicz V. Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polym Degradation Stab, 91, 1219 (2006). http://dx.doi.org/10.1016/j.polymdegradstab.2005.09.007.   DOI
59 Park SJ, Kim BJ. Influence of oxygen plasma treatment on hydrogen chloride removal of activated carbon fibers. J Colloid Interface Sci, 275, 590 (2004). http://dx.doi.org/10.1016/j.jcis.2004.03.011.   DOI
60 Donnet JB, Bansal RC. Carbon Fibers, M. Dekker, New York, NY (1984).
61 Fitzer E. Carbon fibres: present state and future expectations. In: Figueiredo JL, Bernardo CA, Baker RTK, Hüttinger KJ, eds. Carbon Fibers Filaments and Composites. NATO ASI Series Vol. 177, Springer, Netherlands, 3 (1990). http://dx.doi.org/10.1007/978-94-015-6847-0_1.
62 Beltz LA, Gustafson RR. Cyclization kinetics of poly(acrylonitrile). Carbon, 34, 561 (1996). http://dx.doi.org/10.1016/0008-6223(96)00005-X.   DOI
63 Lee SW, Lee HY, Jang SY, Jo SM, Lee HS, Lee S. Tensile properties and morphology of carbon fibers stabilized by plasma treatment. Carbon Lett, 12, 16 (2011).   과학기술학회마을   DOI
64 Lee SW, Lee HY, Jang SY, Jo S, Lee HS, Choe WH, Lee S. Efficient preparation of carbon fibers using plasma assisted stabilization. Carbon, 55, 361 (2013). http://dx.doi.org/10.1016/j.carbon.2012.10.062.   DOI
65 Park SJ. Carbon Fibers, Springer, New York, NY (2015).
66 Minus M, Kumar S. The processing, properties, and structure of carbon fibers. JOM, 57, 52 (2005). http://dx.doi.org/10.1007/s11837-005-0217-8.
67 Chand S. Review carbon fibers for composites. J Mater Sci, 35, 1303 (2000). http://dx.doi.org/10.1023/A:1004780301489.   DOI
68 Fitzer E. Pan-based carbon fibers: present state and trend of the technology from the viewpoint of possibilities and limits to influence and to control the fiber properties by the process parameters. Carbon, 27, 621 (1989). http://dx.doi.org/10.1016/0008-6223(89)90197-8.   DOI
69 Serkov AT, Budnitskii GA, Radishevskii MB, Medvedev VA, Zlatoustova LA. Improving carbon fibre production technology. Fibre Chem, 35, 117 (2003). http://dx.doi.org/10.1023/A:1024838312261.   DOI
70 Perepelkin KE. Oxidized (cyclized) polyacrylonitrile fibres: oxypan. A review. Fibre Chem, 35, 409 (2003). http://dx.doi.org/10.1023/B:FICH.0000020769.42823.31.   DOI
71 Park SJ, Jang YS, Shim JW, Ryu SK. Studies on pore structures and surface functional groups of pitch-based activated carbon fibers. J Colloid Interface Sci, 260, 259 (2003). http://dx.doi.org/10.1016/S0021-9797(02)00081-4.   DOI
72 Ma X, Yuan C, Liu X. Mechanical, microstructure and surface characterizations of carbon fibers prepared from cellulose after liquefying and curing. Materials, 7, 75 (2014). http://dx.doi.org/10.3390/ma7010075.
73 Wu Q, Pan D. A new cellulose based carbon fiber from a lyocell precursor. Text Res J, 72, 405 (2002). http://dx.doi.org/10.1177/004051750207200506.   DOI
74 Fennessey SF, Farris RJ. Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer, 45, 4217 (2004). http://dx.doi.org/10.1016/j.polymer.2004.04.001.   DOI
75 Bronikowski MJ, Willis PA, Colbert DT, Smith KA, Smalley RE. Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: a parametric study. J Vac Sci Technol A, 19, 1800 (2001). http://dx.doi.org/10.1116/1.1380721.   DOI
76 Shim JW, Park SJ, Ryu SK. Effect of modification with $HNO_3$ and NaOH on metal adsorption by pitch-based activated carbon fibers. Carbon, 39, 1635 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00290-6.   DOI
77 Donnet JB, Park SJ. Surface characteristics of pitch-based carbon fibers by inverse gas chromatography method. Carbon, 29, 955 (1991). http://dx.doi.org/10.1016/0008-6223(91)90174-H.   DOI
78 He D, Wang C, Bai Y, Zhu B. Comparison of structure and properties among various PAN fibers for carbon fibers. J Mater Sci Technol, 21, 376 (2005).
79 Morgan P. Carbon Fibers and Their Composites, Taylor & Francis, Boca Raton, FL (2005).
80 Shen X, Ji Y, Wang J. Preparation and pH-sensitivity of polyacrylonitrile (PAN) based porous hollow gel fibers. J Appl Polym Sci, 110, 313 (2008). http://dx.doi.org/10.1002/app.28176.   DOI
81 Bashir Z. A critical review of the stabilisation of polyacrylonitrile. Carbon, 29, 1081 (1991). http://dx.doi.org/10.1016/0008-6223(91)90024-D.   DOI
82 Frank E, Hermanutz F, Buchmeiser MR. Carbon fibers: precursors, manufacturing, and properties. Macromol Mater Eng, 297, 493 (2012). http://dx.doi.org/10.1002/mame.201100406.   DOI   ScienceOn
83 Sherwood PMA. Surface analysis of carbon and carbon fibers for composites. J Electron Spectrosc Relat Phenom, 81, 319 (1996). http://dx.doi.org/10.1016/0368-2048(95)02529-4.   DOI
84 Ouyang Q, Cheng L, Wang H, Li K. Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile. Polym Degradation Stab, 93, 1415 (2008). http://dx.doi.org/10.1016/j.polymdegradstab.2008.05.021.   DOI
85 Ryu SK, Park BJ, Park SJ. XPS analysis of carbon fiber surfaces: anodized and interfacial effects in fiber-epoxy composites. J Colloid Interface Sci, 215, 167 (1999). http://dx.doi.org/10.1006/jcis.1999.6240.   DOI
86 Park SJ, Kim JS. Influence of plasma treatment on microstructures and acid-base surface energetics of nanostructured carbon blacks: $N_2$ plasma environment. J Colloid Interface Sci, 244, 336 (2001). http://dx.doi.org/10.1006/jcis.2001.7920.   DOI
87 Park SJ, Kim BJ. Ammonia removal of activated carbon fibers produced by oxyfluorination. J Colloid Interface Sci, 291, 597 (2005). http://dx.doi.org/10.1016/j.jcis.2005.05.012.   DOI
88 Park SJ, Kim BJ. Influence of ozone treatment on Cr(VI) adsorption of activated carbon. Korean Chem Eng Res, 44, 644 (2006).   과학기술학회마을
89 Wang YQ, Sherwood PMA. Studies of carbon nanotubes and fluorinated nanotubes by X-ray and ultraviolet photoelectron spectroscopy. Chem Mater, 16, 5427 (2004). http://dx.doi.org/10.1021/cm040050t.   DOI
90 Dubkova VI, Rodtsevich SP, Komarevich VG, Kotov DA. Influence of ion-beam carbon-fiber surface treatment on the angle of wetting by epoxy oligomers. J Eng Phys Thermophys, 78, 519 (2005). http://dx.doi.org/10.1007/s10891-005-0089-3.   DOI
91 Park SJ, Jang YS. Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior. J Colloid Interface Sci, 261, 238 (2003). http://dx.doi.org/10.1016/s0021-9797(03)00083-3.   DOI
92 Park SJ, Seo MK, Kim HY, Lee DR. Studies on PAN-based carbon fibers irradiated by $Ar^+$ ion beams. J Colloid Interface Sci, 261, 393 (2003). http://dx.doi.org/10.1016/S0021-9797(03)00091-2.   DOI
93 Park SJ, Seo MK, Rhee KY. Effect of $Ar^+$ ion beam irradiation on the physicochemical characteristics of carbon fibers. Carbon, 41, 592 (2003). http://dx.doi.org/10.1016/S0008-6223(02)00395-0.   DOI
94 Park SJ, Kim KD. Influence of anodic surface treatment of activated carbon on adsorption and ion exchange properties. J Colloid Interface Sci, 218, 331 (1999). http://dx.doi.org/10.1006/jcis.1999.6387.   DOI
95 Heo GY, Hong YT, Park SJ. Preparation and characterization of nickel-coated carbon nanofibers produced from the electropsinning of polyamideimide precursor. Macromol Res, 20, 503 (2012). http://dx.doi.org/10.1007/s13233-012-0075-5.   과학기술학회마을   DOI   ScienceOn
96 Kim S, Park SJ. Effect of acid/base treatment to carbon blacks on preparation of carbon-supported platinum nanoclusters. Electrochim Acta, 52, 3013 (2007). http://dx.doi.org/10.1016/j.electacta.2006.09.060.   DOI
97 Park SJ, Seo MK, Nah C. Influence of surface characteristics of carbon blacks on cure and mechanical behaviors of rubber matrix compoundings. J Colloid Interface Sci, 291, 229 (2005). http://dx.doi.org/10.1016/j.jcis.2005.04.103.   DOI
98 Park SJ, Kim KD. Adsorption behaviors of $CO_2$ and $NH_3$ on chemically surface-treated activated carbons. J Colloid Interface Sci, 212, 186 (1999). http://dx.doi.org/10.1006/jcis.1998.6058.   DOI
99 Long RQ, Yang RT. Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc, 123, 2058 (2001). http://dx.doi.org/10.1021/ja003830l.   DOI
100 Kim BJ, Park H, Park SJ. Toxic gas removal behaviors of porous carbons in the presence of Ag/Ni bimetallic clusters. Bull Korean Chem Soc, 29, 782 (2008). http://dx.doi.org/10.5012/bkcs.2008.29.4.782.   과학기술학회마을   DOI
101 Chinthaginjala JK, Seshan K, Lefferts L. Preparation and application of carbon-nanofiber based microstructured materials as catalyst supports. Ind Eng Chem Res, 46, 3968 (2007). http://dx.doi.org/10.1021/ie061394r.   DOI
102 Park SJ, Seo MK, Lee JR, Lee DR. Studies on epoxy resins cured by cationic latent thermal catalysts: the effect of the catalysts on the thermal, rheological, and mechanical properties. J Polym Sci A, 39, 187 (2001). http://dx.doi.org/10.1002/1099-0518(20010101)39:1<187::AID-POLA210>3.0.CO;2-H.   DOI
103 Im JS, Kwon O, Kim YH, Park SJ, Lee YS. The effect of embedded vanadium catalyst on activated electrospun CFs for hydrogen storage. Microporous Mesoporous Mater, 115, 514 (2008). http://dx.doi.org/10.1016/j.micromeso.2008.02.027.   DOI
104 Park SJ, Kim BJ. Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior. Mater Sci Eng A, 408, 269 (2005). http://dx.doi.org/10.1016/j.msea.2005.08.129.   DOI
105 Park SJ, Lee EJ, Kwon SH. Influence of surface treatment of polyimide film on adhesion enhancement between polyimide and metal films. Bull Korean Chem Soc, 28, 188 (2007). http://dx.doi.org/10.5012/bkcs.2007.28.2.188.   과학기술학회마을   DOI   ScienceOn
106 Park SJ, Park BJ, Ryu SK. Electrochemical treatment on activated carbon fibers for increasing the amount and rate of Cr(VI) adsorption. Carbon, 37, 1223 (1999). http://dx.doi.org/10.1016/S0008-6223(98)00318-2.   DOI
107 Grassie N, McGuchan R. Pyrolysis of polyacrylonitrile and related polymers: I. Thermal analysis of polyacrylonitrile. Eur Polym J, 6, 1277 (1970). http://dx.doi.org/10.1016/0014-3057(70)90046-7.   DOI   ScienceOn
108 Wang YQ, Zhang FQ, Sherwood PMA. X-ray photoelectron spectroscopic study of carbon fiber surfaces. 23. Interfacial interactions between polyvinyl alcohol and carbon fibers electrochemically oxidized in nitric acid solution. Chem Mater, 11, 2573 (1999). http://dx.doi.org/10.1021/cm9902772.   DOI
109 Park SJ, Park BJ. Electrochemically modified PAN carbon fibers and interfacial adhesion in epoxy-resin composites. J Mater Sci Lett, 18, 47 (1999). http://dx.doi.org/10.1023/A:1006673309571.   DOI
110 Ko TH. Characterization of PAN-based nonburning (nonflam mable) fibers. J Appl Polym Sci, 47, 707 (1993). http://dx.doi.org/10.1002/app.1993.070470414.   DOI
111 Grassie N, McGuchan R. Pyrolysis of polyacrylonitrile and related polymers: II. The effect of sample preparation on the thermal behaviour of polyacrylonitrile. Eur Polym J, 7, 1091 (1971). http://dx.doi.org/10.1016/0014-3057(71)90141-8.   DOI
112 Grassie N, Hay JN. Thermal coloration and insolubilization in polyacrylonitrile. J Polym Sci, 56, 189 (1962). http://dx.doi.org/10.1002/pol.1962.1205616316.   DOI
113 Yun JH, Kim BH, Yang KS, Bang YH, Kim SR, Woo HG. Process optimization for preparing high performance PAN-based carbon fibers. Bull Korean Chem Soc, 30, 2253 (2009). http://dx.doi. org/10.5012/bkcs.2009.30.10.2253.   과학기술학회마을   DOI
114 Yu M, Wang C, Bai Y, Wang Y, Xu Y. Influence of precursor properties on the thermal stabilization of polyacrylonitrile fibers. Polym Bull, 57, 757 (2006). http://dx.doi.org/10.1007/s00289-006-0629-9.   DOI
115 Rahaman MSA, Ismail AF, Mustafa A. A review of heat treatment on polyacrylonitrile fiber. Polym Degradation Stab, 92, 1421 (2007). http://dx.doi.org/10.1016/j.polymdegradstab.2007.03.023.   DOI
116 Bansal RC, Donnet JB, Stoeckli F. Active Carbon, M. Dekker, New York, NY (1988).
117 Cho CW, Cho D, Ko YG, Kwon OH, Kang IK. Stabilization, carbonization, and characterization of PAN precursor webs processed by electrospinning technique. Carbon Lett, 8, 313 (2007).   과학기술학회마을   DOI
118 Bajaj P, Sreekumar TV, Sen K. Thermal behaviour of acrylonitrile copolymers having methacrylic and itaconic acid comonomers. Polymer, 42, 1707 (2001). http://dx.doi.org/10.1016/S0032-3861(00)00583-8.   DOI
119 Liu Y, Kumar S. Recent progress in fabrication, structure, and properties of carbon fibers. Polym Rev, 52, 234 (2012). http://dx.doi.org/10.1080/15583724.2012.705410.   DOI
120 Schnabel W. Polymer Degradation: Principles and Practical Applications, Hanser Publishers, Munich, Germany (1981).
121 Parejo Calvo WA, Duarte CL, Machado LDB, Manzoli JE, Geraldo ABC, Kodama Y, Silva LGA, Pino ES, Somessari ESR, Silveira CG, Rela PR. Electron beam accelerators: trends in radiation processing technology for industrial and environmental applications in Latin America and the Caribbean. Radiat Phys Chem, 81, 1276 (2012). http://dx.doi.org/10.1016/j.radphyschem.2012.02.013.   DOI
122 International Atomic Energy Agency. Industrial electron beam processing. Consultants' Meeting on the "Preparation of the status report on low energy, self-shielded electron accelerators and of industrial scale electron/X-ray irradiators", Vienna, Austria (2008).