An overview of new oxidation methods for polyacrylonitrile-based carbon fibers |
Shin, Hye Kyoung
(Department of Chemistry, Inha University)
Park, Mira (Department of Organic Materials and Fiber Engineering, Chonbuk National University) Kim, Hak-Yong (Department of Organic Materials and Fiber Engineering, Chonbuk National University) Park, Soo-Jin (Department of Chemistry, Inha University) |
1 | Nishi Y, Sato H, Iwata K, Nishi Y, Iwata K. Effects of homogeneous irradiation of electron beam with low potential on adhesive strength of polymethyl methacrylate composite sheet covered with nylon-6 film. J Mater Res, 24, 3503 (2009). http://dx.doi.org/doi:10.1557/jmr.2009.0429. DOI |
2 | Shin BS, Seo DK, Kim HB, Jeun JP, Kang PH. A study of the thermal and mechanical properties of electron beam irradiated HDPE/EPDM blends in the presence of triallyl cyanurate. J Ind Eng Chem, 18, 526 (2012). http://dx.doi.org/10.1016/j.jiec.2011.11.025. DOI |
3 | Senna MM, Mohamed RM, Shehab-Eldin AN, El-Hamouly S. Characterization of electron beam irradiated natural rubber/modified starch composites. J Ind Eng Chem, 18, 1654 (2012). http://dx.doi.org/10.1016/j.jiec.2012.03.004. DOI |
4 | Yoon HJ, Kim SE, Kwon YK, Kim EJ, Lee JC, Lee YS. Synthesis of silver nanostructures on polytetrafluoroethylene (PTFE) using electron beam irradiation for antimicrobacterial effect. J Ind Eng Chem, 18, 586 (2012). http://dx.doi.org/10.1016/j.jiec.2011.10.007. DOI |
5 | Dahal P, Kim YC. Preparation and characterization of modified polypropylene by using electron beam irradiation. J Ind Eng Chem, 19, 1879 (2013). http://dx.doi.org/10.1016/j.jiec.2013.02.027. DOI |
6 | Shukushima S, Hayami H, Ito T, Nishimoto S. Modification of radiation cross-linked polypropylene. Radiat Phys Chem, 60, 489 (2001). http://dx.doi.org/10.1016/S0969-806X(00)00395-9. DOI ScienceOn |
7 | Chmielewski AG, Al-Sheikhly M, Berejka AJ, Cleland MR, Antoniak M. Recent developments in the application of electron accelerators for polymer processing. Radiat Phys Chem, 94, 147 (2014). http://dx.doi.org/10.1016/j.radphyschem.2013.06.024. DOI |
8 | Kang PH, Jeon YK, Jeun JP, Shin JW, Nho YC. Effect of electron beam irradiation on polyimide film. J Ind Eng Chem, 14, 672 (2008). http://dx.doi.org/10.1016/j.jiec.2008.03.004. 과학기술학회마을 DOI |
9 | An JC. Synthesis of the combined inter- and intra-crosslinked nanohydrogels by e-beam ionizing radiation. J Ind Eng Chem, 16, 657 (2010). http://dx.doi.org/10.1016/j.jiec.2010.05.013. 과학기술학회마을 DOI |
10 | Miao P, Wu D, Zeng K, Xu G, Zhao Ce, Yang G. Influence of electron beam pre-irradiation on the thermal behaviors of polyacrylonitrile. Polym Degradation Stab, 95, 1665 (2010). http://dx.doi.org/10.1016/j.polymdegradstab.2010.05.028. DOI ScienceOn |
11 | Park M, Pant B, Choi J, Park YW, Lee C, Shin HK, Park SJ, Kim HY. Facile preparation of self-assembled wool-based graphene hydrogels by electron beam irradiation. Carbon Lett, 15, 136 (2014). http://dx.doi.org/10.5714/CL.2014.15.2.136. 과학기술학회마을 DOI |
12 | Shin HK, Pyo Jeun J, Bin Kim H, Hyun Kang P. Isolation of cellulose fibers from kenaf using electron beam. Radiat Phys Chem, 81, 936 (2012). http://dx.doi.org/10.1016/j.radphyschem.2011.10.010. DOI |
13 | Park M, Shin HK, Kim BS, Pant B, Barakat NAM, Kim HY. Facile preparation of graphene induced from electron-beam irradiated graphite. Mater Lett, 105, 236 (2013). http://dx.doi.org/10.1016/j.matlet.2013.04.027. DOI ScienceOn |
14 | Liu Y, Park M, Shin HK, Pant B, Park SJ, Kim HY. Preparation and characterization of chitosan-based nanofibers by ecofriendly electrospinning. Mater Lett, 132, 23 (2014). http://dx.doi.org/10.1016/j.matlet.2014.06.041. DOI |
15 | Siraj K, Khaleeq-ur-Rahman M, Rafique MS, Nawaz T. Effect of 4MeV electron beam irradiation on carbon films. Nucl Instr Method Phys Res B, 269, 53 (2011). http://dx.doi.org/10.1016/j.nimb.2010.09.022. DOI |
16 | Allen JT, Calhoun R, Helm J, Kruger S, Lee C, Mendonsa R, Meyer S, Pageau G, Shaffer H, Whitham K, Williams CB, Farrell JP. A fully integrated 10 MeV electron beam sterilization system. Radiat Phys Chem, 46, 457 (1995). http://dx.doi.org/10.1016/0969-806X(95)00193-2. DOI |
17 | Shin H-S, Kim YR, Han B, Makarov IE, Ponomarev AV, Pikaev AK. Application of electron beam to treatment of wastewater from papermill. Radiat Phys Chem, 65, 539 (2002). http://dx.doi.org/10.1016/S0969-806X(02)00348-1. DOI |
18 | Supriya P, Sridhar KR, Ganesh S. Fungal decontamination and enhancement of shelf life of edible split beans of wild legume Canavalia maritima by the electron beam irradiation. Radiat Phys Chem, 96, 5 (2014). http://dx.doi.org/10.1016/j.radphyschem.2013.08.007. DOI |
19 | Danmark S, Finne-Wistrand A, Schander K, Hakkarainen M, Arvidson K, Mustafa K, Albertsson AC. In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization. Acta Biomater, 7, 2035 (2011). http://dx.doi.org/10.1016/j.actbio.2011.02.011. DOI |
20 | Odelius K, Plikk P, Albertsson AC. The influence of composition of porous copolyester scaffolds on reactions induced by irradiation sterilization. Biomaterials, 29, 129 (2008). http://dx.doi.org/10.1016/j.biomaterials.2007.08.046. DOI |
21 | Luan S, Shi H, Yao Z, Wang J, Song Y, Yin J. Effect of electron beam irradiation sterilization on the biomedical poly (octene-coethylene)/ polypropylene films. Nucl Instr Method Phys Res B, 268, 1474 (2010). http://dx.doi.org/10.1016/j.nimb.2010.01.014. DOI |
22 | Auslender VL, Bryazgin AA, Voronin LA, Polyakov VA, Grodetskiy VP, Izhboldin IK, Mirsaetov OM, Petrov AM, Obidin YT, Ponomaryov VN. Automated technological radiation installation for sterilization of medical goods. Radiat Phys Chem, 52, 459 (1998). http://dx.doi.org/10.1016/S0969-806X(98)00051-6. DOI |
23 | Sampa MHO, Rela PR, Casas AL, Mori MN, Duarte CL. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon: a comparative study. Radiat Phys Chem, 71, 459 (2004). http://dx.doi.org/10.1016/j.radphyschem.2004.03.023. DOI |
24 | Zhang M, Zhu R, Zhang M, Gao B, Sun D, Wang S. High-energy pulse-electron-beam-induced molecular and cellular damage in Saccharomyces cerevisiae. Res Microbiol, 164, 100 (2013). http://dx.doi.org/10.1016/j.resmic.2012.10.023. DOI |
25 | Park W, Hwang MH, Kim TH, Lee MJ, Kim IS. Enhancement in characteristics of sewage sludge and anaerobic treatability by electron beam pre-treatment. Radiat Phys Chem, 78, 124 (2009). http://dx.doi.org/10.1016/j.radphyschem.2008.09.010. DOI |
26 | Ribeiro MA, Sato IM, Duarte CL, Sampa MHO, Salvador VLR, Scapin MA. Application of the electron-beam treatment for Ca, Si, P, Al, Fe, Cr, Zn, Co, As, Se, Cd and Hg removal in the simulated and actual industrial effluents. Radiat Phys Chem, 71, 425 (2004). http://dx.doi.org/10.1016/j.radphyschem.2004.03.017. DOI |
27 | Duarte CL, Sampa MHO, Rela PR, Oikawa H, Cherbakian EH, Sena HC, Abe H, Sciani V. Application of electron beam irradiation combined to conventional treatment to treat industrial effluents. Radiat Phys Chem, 57, 513 (2000). http://dx.doi.org/10.1016/S0969-806X(99)00453-3. DOI |
28 | Sampa MHO, Duarte CL, Rela PR, Somessari ESR, Silveira CG, Azevedo AL. Remotion of organic compounds of actual industrial effluents by electron beam irradiation. Radiat Phys Chem, 52, 365 (1998). http://dx.doi.org/10.1016/S0969-806X(98)00035-8. DOI |
29 | Duarte CL, Geraldo LL, Junior OdAP, Borrely SI, Sato IM, Sampa MHdO. Treatment of effluents from petroleum production by electron beam irradiation. Radiat Phys Chem, 71, 445 (2004). http://dx.doi.org/10.1016/j.radphyschem.2004.03.021. DOI |
30 | Moraes MCF, Romanelli MF, Sena HC, Pasqualini da Silva G, Sampa MHO, Borrely SI. Whole acute toxicity removal from industrial and domestic effluents treated by electron beam radiation: emphasis on anionic surfactants. Radiat Phys Chem, 71, 463 (2004). http://dx.doi.org/10.1016/j.radphyschem.2004.03.022. DOI |
31 | Borrely SI, Gonçalves AA, Oikawa H, Duarte CL, Rocha FR. Electron beam accelerator for detoxification of effluents. When radiation processing can enhance the acute toxicity? Radiat Phys Chem, 71, 455 (2004). http://dx.doi.org/10.1016/j.radphyschem.2004.03.087. DOI |
32 | Han B, Kyu Kim J, Kim Y, Seung Choi J, Young Jeong K. Operation of industrial-scale electron beam wastewater treatment plant. Radiat Phys Chem, 81, 1475 (2012). http://dx.doi.org/10.1016/j.radphyschem.2012.01.030. DOI |
33 | Kim YH, Choi SJ, Park HJ, Lee JH. Electron beam-induced mutants of microalgae Arthrospira platensis increased antioxidant activity. J Ind Eng Chem, 20, 1834 (2014). http://dx.doi.org/10.1016/j.jiec.2013.08.039. DOI |
34 | Katial RK, Grier TJ, Hazelhurst DM, Hershey J, Engler RJ. Deleterious effects of electron beam radiation on allergen extracts. J Allergy Clin Immunol, 110, 215 (2002). http://dx.doi.org/10.1067/mai.2002.126377. DOI |
35 | Lim SJ, Kim TH, Lee SH, Kim JY, Kim SK. Effects of electron beam irradiation and temperature on the treatment of swine wastewater using an ion exchange biological reactor. Bioresour Technol, 137, 233 (2013). http://dx.doi.org/10.1016/j.biortech.2013.03.083. DOI |
36 | Lozada-Castro JJ, Gil-Díaz M, Santos-Delgado MJ, Rubio-Barroso S, Polo-Diez LM. Effect of electron-beam irradiation on cholesterol oxide formation in different ready-to-eat foods. Innov Food Sci Emerg Technol, 12, 519 (2011). http://dx.doi.org/10.1016/j.ifset.2011.07.005. DOI |
37 | Martin DI, Margaritescu I, Cirstea E, Togoe I, Ighigeanu D, Nemtanu MR, Oproiu C, Iacob N. Application of accelerated electron beam and microwave irradiation to biological waste treatment. Vacuum, 77, 501 (2005). http://dx.doi.org/10.1016/j.vacuum.2004.09.019. DOI |
38 | Ramathilaga A, Murugesan AG. Effect of electron beam irradiation on proximate, microbiological and sensory characteristics of chyavanaprash: ayurvedic poly herbal formulation. Innov Food Sci Emerg Technol, 12, 515 (2011). http://dx.doi.org/10.1016/j.ifset.2011.06.004. DOI |
39 | Rivadeneira R, Moreira R, Kim J, Castell-Perez ME. Dose mapping of complex-shaped foods using electron-beam accelerators. Food Control, 18, 1223 (2007). http://dx.doi.org/10.1016/j.foodcont.2006.07.023. DOI |
40 | Al-Farisi M, Abuagla A, Mohamed E, Gohs U. The effect of electron beam on dates infestation. Food Control, 33, 157 (2013). http://dx.doi.org/10.1016/j.foodcont.2013.02.029. DOI ScienceOn |
41 | Shin H, Jeun J, Kang P. The characterization of polyacrylonitrile fibers stabilized by electron beam irradiation. Fiber Polym, 13, 724 (2012). http://dx.doi.org/10.1007/s12221-012-0724-5. 과학기술학회마을 DOI ScienceOn |
42 | Shin HK, Park M, Kang PH, Choi HS, Park SJ. Preparation and characterization of polyacrylonitrile-based carbon fibers produced by electron beam irradiation pretreatment. J Ind Eng Chem, 20, 3789 (2014). http://dx.doi.org/10.1016/j.jiec.2013.12.080. DOI |
43 | Kim DY, Shin HK, Jeun JP, Kim HB, Oh SH, Kang PH. Characterization of polyacrylonitrile based carbon nanofiber mats via electron beam processing. J Nanosci Nanotechnol, 12, 6120 (2012). http://dx.doi.org/10.1166/jnn.2012.6346. DOI |
44 | Igartua M, Hernandez RM, Rosas JE, Patarroyo ME, Pedraz JL. Gamma-irradiation effects on biopharmaceutical properties of PLGA microspheres loaded with SPf66 synthetic vaccine. Eur J Pharm Biopharm, 69, 519 (2008). http://dx.doi.org/10.1016/j.ejpb.2007.12.014. DOI |
45 | Choi Y, Park M, Shin HK, Liu Y, Choi JW, Nirmala R, Park SJ, Kim HY. Facile stabilization process of polyacrylonitrile-based electrospun nanofibers by spraying 1% hydrogen peroxide and electron beam irradiation. Mater Lett, 123, 59 (2014). http://dx.doi.org/10.1016/j.matlet.2014.03.020. DOI |
46 | Razem D, Katusin-Razem B. The effects of irradiation on controlled drug delivery/controlled drug release systems. Radiat Phys Chem, 77, 288 (2008). http://dx.doi.org/10.1016/j.radphyschem.2007.06.006. DOI |
47 | Williams HE, Huxley J, Claybourn M, Booth J, Hobbs M, Meehan E, Clark B. The effect of -irradiation and polymer composition on the stability of PLG polymer and microspheres. Polym Degradation Stab, 91, 2171 (2006). http://dx.doi.org/10.1016/j.polymdegradstab.2006.01.006. DOI |
48 | Tan L, Wan A. Structural changes of polyacrylonitrile precursor fiber induced by -ray irradiation. Mater Lett, 65, 3109 (2011). http://dx.doi.org/10.1016/j.matlet.2011.06.090. DOI |
49 | Liu W, Wang M, Xing Z, Qi Y, Wu G. Radiation-induced crosslinking of polyacrylonitrile fibers and the subsequent regulative effect on the preoxidation process. Radiat Phys Chem, 81, 622 (2012). http://dx.doi.org/10.1016/j.radphyschem.2012.02.029. DOI |
50 | Liu W, Wang M, Xing Z, Wu G. Radiation oxidation and subsequent thermal curing of polyacrylonitrile fiber. Radiat Phys Chem, 94, 9 (2014). http://dx.doi.org/10.1016/j.radphyschem.2013.06.015. DOI |
51 | Cowd MA. Polymer Chemistry, Murray, London (1982). |
52 | Paiva MC, Kotasthane P, Edie DD, Ogale AA. UV stabilization route for melt-processible PAN-based carbon fibers. Carbon, 41, 1399 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00041-1. DOI |
53 | Kuleznev VN, Shershnev VA. The Chemistry and Physics of Polymers, Mir Publishers, Moscow (1990). |
54 | Fouda IM, Shabana HM, El-Sharkawy FM. Changes in orientation caused by UV irradiation of nylon 6 fibers. J Appl Polym Sci, 88, 3202 (2003). http://dx.doi.org/10.1002/app.12063. DOI ScienceOn |
55 | Nough SA. The effect of UV radiation on the optical properties of cellulose triacetate. Radiat Measur, 27, 499 (1997). http://dx.doi.org/10.1016/S1350-4487(97)00006-1. DOI |
56 | Morales MS, Ogale AA. Wet-spun, photoinitiator-modified polyacrylonitrile precursor fibers: UV-assisted stabilization. J Appl Polym Sci, 130, 2494 (2013). http://dx.doi.org/10.1002/app.39442. DOI |
57 | Reznickova A, Kolska Z, Hnatowicz V, Stopka P, Svorcik V. Comparison of glow argon plasma-induced surface changes of thermoplastic polymers. Nucl Instr Method Phys Res B, 269, 83 (2011). http://dx.doi.org/10.1016/j.nimb.2010.11.018. DOI |
58 | Svorcik V, Kolarova K, Slepicka P, Mackova A, Novotna M, Hnatowicz V. Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polym Degradation Stab, 91, 1219 (2006). http://dx.doi.org/10.1016/j.polymdegradstab.2005.09.007. DOI |
59 | Park SJ, Kim BJ. Influence of oxygen plasma treatment on hydrogen chloride removal of activated carbon fibers. J Colloid Interface Sci, 275, 590 (2004). http://dx.doi.org/10.1016/j.jcis.2004.03.011. DOI |
60 | Donnet JB, Bansal RC. Carbon Fibers, M. Dekker, New York, NY (1984). |
61 | Fitzer E. Carbon fibres: present state and future expectations. In: Figueiredo JL, Bernardo CA, Baker RTK, Hüttinger KJ, eds. Carbon Fibers Filaments and Composites. NATO ASI Series Vol. 177, Springer, Netherlands, 3 (1990). http://dx.doi.org/10.1007/978-94-015-6847-0_1. |
62 | Beltz LA, Gustafson RR. Cyclization kinetics of poly(acrylonitrile). Carbon, 34, 561 (1996). http://dx.doi.org/10.1016/0008-6223(96)00005-X. DOI |
63 | Lee SW, Lee HY, Jang SY, Jo SM, Lee HS, Lee S. Tensile properties and morphology of carbon fibers stabilized by plasma treatment. Carbon Lett, 12, 16 (2011). 과학기술학회마을 DOI |
64 | Lee SW, Lee HY, Jang SY, Jo S, Lee HS, Choe WH, Lee S. Efficient preparation of carbon fibers using plasma assisted stabilization. Carbon, 55, 361 (2013). http://dx.doi.org/10.1016/j.carbon.2012.10.062. DOI |
65 | Park SJ. Carbon Fibers, Springer, New York, NY (2015). |
66 | Minus M, Kumar S. The processing, properties, and structure of carbon fibers. JOM, 57, 52 (2005). http://dx.doi.org/10.1007/s11837-005-0217-8. |
67 | Chand S. Review carbon fibers for composites. J Mater Sci, 35, 1303 (2000). http://dx.doi.org/10.1023/A:1004780301489. DOI |
68 | Fitzer E. Pan-based carbon fibers: present state and trend of the technology from the viewpoint of possibilities and limits to influence and to control the fiber properties by the process parameters. Carbon, 27, 621 (1989). http://dx.doi.org/10.1016/0008-6223(89)90197-8. DOI |
69 | Serkov AT, Budnitskii GA, Radishevskii MB, Medvedev VA, Zlatoustova LA. Improving carbon fibre production technology. Fibre Chem, 35, 117 (2003). http://dx.doi.org/10.1023/A:1024838312261. DOI |
70 | Perepelkin KE. Oxidized (cyclized) polyacrylonitrile fibres: oxypan. A review. Fibre Chem, 35, 409 (2003). http://dx.doi.org/10.1023/B:FICH.0000020769.42823.31. DOI |
71 | Park SJ, Jang YS, Shim JW, Ryu SK. Studies on pore structures and surface functional groups of pitch-based activated carbon fibers. J Colloid Interface Sci, 260, 259 (2003). http://dx.doi.org/10.1016/S0021-9797(02)00081-4. DOI |
72 | Ma X, Yuan C, Liu X. Mechanical, microstructure and surface characterizations of carbon fibers prepared from cellulose after liquefying and curing. Materials, 7, 75 (2014). http://dx.doi.org/10.3390/ma7010075. |
73 | Wu Q, Pan D. A new cellulose based carbon fiber from a lyocell precursor. Text Res J, 72, 405 (2002). http://dx.doi.org/10.1177/004051750207200506. DOI |
74 | Fennessey SF, Farris RJ. Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer, 45, 4217 (2004). http://dx.doi.org/10.1016/j.polymer.2004.04.001. DOI |
75 | Bronikowski MJ, Willis PA, Colbert DT, Smith KA, Smalley RE. Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: a parametric study. J Vac Sci Technol A, 19, 1800 (2001). http://dx.doi.org/10.1116/1.1380721. DOI |
76 | Shim JW, Park SJ, Ryu SK. Effect of modification with and NaOH on metal adsorption by pitch-based activated carbon fibers. Carbon, 39, 1635 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00290-6. DOI |
77 | Donnet JB, Park SJ. Surface characteristics of pitch-based carbon fibers by inverse gas chromatography method. Carbon, 29, 955 (1991). http://dx.doi.org/10.1016/0008-6223(91)90174-H. DOI |
78 | He D, Wang C, Bai Y, Zhu B. Comparison of structure and properties among various PAN fibers for carbon fibers. J Mater Sci Technol, 21, 376 (2005). |
79 | Morgan P. Carbon Fibers and Their Composites, Taylor & Francis, Boca Raton, FL (2005). |
80 | Shen X, Ji Y, Wang J. Preparation and pH-sensitivity of polyacrylonitrile (PAN) based porous hollow gel fibers. J Appl Polym Sci, 110, 313 (2008). http://dx.doi.org/10.1002/app.28176. DOI |
81 | Bashir Z. A critical review of the stabilisation of polyacrylonitrile. Carbon, 29, 1081 (1991). http://dx.doi.org/10.1016/0008-6223(91)90024-D. DOI |
82 | Frank E, Hermanutz F, Buchmeiser MR. Carbon fibers: precursors, manufacturing, and properties. Macromol Mater Eng, 297, 493 (2012). http://dx.doi.org/10.1002/mame.201100406. DOI ScienceOn |
83 | Sherwood PMA. Surface analysis of carbon and carbon fibers for composites. J Electron Spectrosc Relat Phenom, 81, 319 (1996). http://dx.doi.org/10.1016/0368-2048(95)02529-4. DOI |
84 | Ouyang Q, Cheng L, Wang H, Li K. Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile. Polym Degradation Stab, 93, 1415 (2008). http://dx.doi.org/10.1016/j.polymdegradstab.2008.05.021. DOI |
85 | Ryu SK, Park BJ, Park SJ. XPS analysis of carbon fiber surfaces: anodized and interfacial effects in fiber-epoxy composites. J Colloid Interface Sci, 215, 167 (1999). http://dx.doi.org/10.1006/jcis.1999.6240. DOI |
86 | Park SJ, Kim JS. Influence of plasma treatment on microstructures and acid-base surface energetics of nanostructured carbon blacks: plasma environment. J Colloid Interface Sci, 244, 336 (2001). http://dx.doi.org/10.1006/jcis.2001.7920. DOI |
87 | Park SJ, Kim BJ. Ammonia removal of activated carbon fibers produced by oxyfluorination. J Colloid Interface Sci, 291, 597 (2005). http://dx.doi.org/10.1016/j.jcis.2005.05.012. DOI |
88 | Park SJ, Kim BJ. Influence of ozone treatment on Cr(VI) adsorption of activated carbon. Korean Chem Eng Res, 44, 644 (2006). 과학기술학회마을 |
89 | Wang YQ, Sherwood PMA. Studies of carbon nanotubes and fluorinated nanotubes by X-ray and ultraviolet photoelectron spectroscopy. Chem Mater, 16, 5427 (2004). http://dx.doi.org/10.1021/cm040050t. DOI |
90 | Dubkova VI, Rodtsevich SP, Komarevich VG, Kotov DA. Influence of ion-beam carbon-fiber surface treatment on the angle of wetting by epoxy oligomers. J Eng Phys Thermophys, 78, 519 (2005). http://dx.doi.org/10.1007/s10891-005-0089-3. DOI |
91 | Park SJ, Jang YS. Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior. J Colloid Interface Sci, 261, 238 (2003). http://dx.doi.org/10.1016/s0021-9797(03)00083-3. DOI |
92 | Park SJ, Seo MK, Kim HY, Lee DR. Studies on PAN-based carbon fibers irradiated by ion beams. J Colloid Interface Sci, 261, 393 (2003). http://dx.doi.org/10.1016/S0021-9797(03)00091-2. DOI |
93 | Park SJ, Seo MK, Rhee KY. Effect of ion beam irradiation on the physicochemical characteristics of carbon fibers. Carbon, 41, 592 (2003). http://dx.doi.org/10.1016/S0008-6223(02)00395-0. DOI |
94 | Park SJ, Kim KD. Influence of anodic surface treatment of activated carbon on adsorption and ion exchange properties. J Colloid Interface Sci, 218, 331 (1999). http://dx.doi.org/10.1006/jcis.1999.6387. DOI |
95 | Heo GY, Hong YT, Park SJ. Preparation and characterization of nickel-coated carbon nanofibers produced from the electropsinning of polyamideimide precursor. Macromol Res, 20, 503 (2012). http://dx.doi.org/10.1007/s13233-012-0075-5. 과학기술학회마을 DOI ScienceOn |
96 | Kim S, Park SJ. Effect of acid/base treatment to carbon blacks on preparation of carbon-supported platinum nanoclusters. Electrochim Acta, 52, 3013 (2007). http://dx.doi.org/10.1016/j.electacta.2006.09.060. DOI |
97 | Park SJ, Seo MK, Nah C. Influence of surface characteristics of carbon blacks on cure and mechanical behaviors of rubber matrix compoundings. J Colloid Interface Sci, 291, 229 (2005). http://dx.doi.org/10.1016/j.jcis.2005.04.103. DOI |
98 | Park SJ, Kim KD. Adsorption behaviors of and on chemically surface-treated activated carbons. J Colloid Interface Sci, 212, 186 (1999). http://dx.doi.org/10.1006/jcis.1998.6058. DOI |
99 | Long RQ, Yang RT. Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc, 123, 2058 (2001). http://dx.doi.org/10.1021/ja003830l. DOI |
100 | Kim BJ, Park H, Park SJ. Toxic gas removal behaviors of porous carbons in the presence of Ag/Ni bimetallic clusters. Bull Korean Chem Soc, 29, 782 (2008). http://dx.doi.org/10.5012/bkcs.2008.29.4.782. 과학기술학회마을 DOI |
101 | Chinthaginjala JK, Seshan K, Lefferts L. Preparation and application of carbon-nanofiber based microstructured materials as catalyst supports. Ind Eng Chem Res, 46, 3968 (2007). http://dx.doi.org/10.1021/ie061394r. DOI |
102 | Park SJ, Seo MK, Lee JR, Lee DR. Studies on epoxy resins cured by cationic latent thermal catalysts: the effect of the catalysts on the thermal, rheological, and mechanical properties. J Polym Sci A, 39, 187 (2001). http://dx.doi.org/10.1002/1099-0518(20010101)39:1<187::AID-POLA210>3.0.CO;2-H. DOI |
103 | Im JS, Kwon O, Kim YH, Park SJ, Lee YS. The effect of embedded vanadium catalyst on activated electrospun CFs for hydrogen storage. Microporous Mesoporous Mater, 115, 514 (2008). http://dx.doi.org/10.1016/j.micromeso.2008.02.027. DOI |
104 | Park SJ, Kim BJ. Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior. Mater Sci Eng A, 408, 269 (2005). http://dx.doi.org/10.1016/j.msea.2005.08.129. DOI |
105 | Park SJ, Lee EJ, Kwon SH. Influence of surface treatment of polyimide film on adhesion enhancement between polyimide and metal films. Bull Korean Chem Soc, 28, 188 (2007). http://dx.doi.org/10.5012/bkcs.2007.28.2.188. 과학기술학회마을 DOI ScienceOn |
106 | Park SJ, Park BJ, Ryu SK. Electrochemical treatment on activated carbon fibers for increasing the amount and rate of Cr(VI) adsorption. Carbon, 37, 1223 (1999). http://dx.doi.org/10.1016/S0008-6223(98)00318-2. DOI |
107 | Grassie N, McGuchan R. Pyrolysis of polyacrylonitrile and related polymers: I. Thermal analysis of polyacrylonitrile. Eur Polym J, 6, 1277 (1970). http://dx.doi.org/10.1016/0014-3057(70)90046-7. DOI ScienceOn |
108 | Wang YQ, Zhang FQ, Sherwood PMA. X-ray photoelectron spectroscopic study of carbon fiber surfaces. 23. Interfacial interactions between polyvinyl alcohol and carbon fibers electrochemically oxidized in nitric acid solution. Chem Mater, 11, 2573 (1999). http://dx.doi.org/10.1021/cm9902772. DOI |
109 | Park SJ, Park BJ. Electrochemically modified PAN carbon fibers and interfacial adhesion in epoxy-resin composites. J Mater Sci Lett, 18, 47 (1999). http://dx.doi.org/10.1023/A:1006673309571. DOI |
110 | Ko TH. Characterization of PAN-based nonburning (nonflam mable) fibers. J Appl Polym Sci, 47, 707 (1993). http://dx.doi.org/10.1002/app.1993.070470414. DOI |
111 | Grassie N, McGuchan R. Pyrolysis of polyacrylonitrile and related polymers: II. The effect of sample preparation on the thermal behaviour of polyacrylonitrile. Eur Polym J, 7, 1091 (1971). http://dx.doi.org/10.1016/0014-3057(71)90141-8. DOI |
112 | Grassie N, Hay JN. Thermal coloration and insolubilization in polyacrylonitrile. J Polym Sci, 56, 189 (1962). http://dx.doi.org/10.1002/pol.1962.1205616316. DOI |
113 | Yun JH, Kim BH, Yang KS, Bang YH, Kim SR, Woo HG. Process optimization for preparing high performance PAN-based carbon fibers. Bull Korean Chem Soc, 30, 2253 (2009). http://dx.doi. org/10.5012/bkcs.2009.30.10.2253. 과학기술학회마을 DOI |
114 | Yu M, Wang C, Bai Y, Wang Y, Xu Y. Influence of precursor properties on the thermal stabilization of polyacrylonitrile fibers. Polym Bull, 57, 757 (2006). http://dx.doi.org/10.1007/s00289-006-0629-9. DOI |
115 | Rahaman MSA, Ismail AF, Mustafa A. A review of heat treatment on polyacrylonitrile fiber. Polym Degradation Stab, 92, 1421 (2007). http://dx.doi.org/10.1016/j.polymdegradstab.2007.03.023. DOI |
116 | Bansal RC, Donnet JB, Stoeckli F. Active Carbon, M. Dekker, New York, NY (1988). |
117 | Cho CW, Cho D, Ko YG, Kwon OH, Kang IK. Stabilization, carbonization, and characterization of PAN precursor webs processed by electrospinning technique. Carbon Lett, 8, 313 (2007). 과학기술학회마을 DOI |
118 | Bajaj P, Sreekumar TV, Sen K. Thermal behaviour of acrylonitrile copolymers having methacrylic and itaconic acid comonomers. Polymer, 42, 1707 (2001). http://dx.doi.org/10.1016/S0032-3861(00)00583-8. DOI |
119 | Liu Y, Kumar S. Recent progress in fabrication, structure, and properties of carbon fibers. Polym Rev, 52, 234 (2012). http://dx.doi.org/10.1080/15583724.2012.705410. DOI |
120 | Schnabel W. Polymer Degradation: Principles and Practical Applications, Hanser Publishers, Munich, Germany (1981). |
121 | Parejo Calvo WA, Duarte CL, Machado LDB, Manzoli JE, Geraldo ABC, Kodama Y, Silva LGA, Pino ES, Somessari ESR, Silveira CG, Rela PR. Electron beam accelerators: trends in radiation processing technology for industrial and environmental applications in Latin America and the Caribbean. Radiat Phys Chem, 81, 1276 (2012). http://dx.doi.org/10.1016/j.radphyschem.2012.02.013. DOI |
122 | International Atomic Energy Agency. Industrial electron beam processing. Consultants' Meeting on the "Preparation of the status report on low energy, self-shielded electron accelerators and of industrial scale electron/X-ray irradiators", Vienna, Austria (2008). |