• Title/Summary/Keyword: the strength factors

Search Result 2,933, Processing Time 0.028 seconds

Material Resistance Factors for Reinforced Concrete Flexural and Compression Members (철근콘크리트 휨부재 및 압축부재의 재료조항계수 적용에 관한 연구)

  • 김재홍;이재훈
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.21-30
    • /
    • 2000
  • In the Ultimate Strength Design, the design strength of a member is determined by multiplying the strength reduction factor to the nominal strength. This concept may be a reasonable approach, however it can not consider failure modes appropriately. Moreover, column design strength diagram show an abrupt change at a low level of axial load, which does not seem to be reasonable. This research compares the design strength determined by the strength resistance factors. As the material resistance factors for flexure and compression, 0.65 and 0.90 are proposed for concrete and steel, respectively. The design strength calculation process by applying material resistance factors addresses failure modes more effectively than by applying member strength reduction factor, and provides more resnable design strength for reinforced concrete flexural and compression members.

Effect of various work factors on push-pull strength and muscle recruitment pattern (작업 요인이 push-pull strength와 근육 동원 패턴에 미치는 영향)

  • 심정훈;이상도
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.4
    • /
    • pp.46-53
    • /
    • 2002
  • Push-pull strength has been found to be associated with various work factors such as height, distance, repetition, duration, posture and individual factors. Therefore, this study was performed to investigate the effect of various work factors on push-pull strength and muscle recruitment pattern. Work factors were consisted of grip height(elbow, shoulder), grip distance(100%, 50%, and 25% of maximum grip distance) and shoulder angle(neutral($90^{\cire}$), and abduction($45^{\cire}$, $0^{\cire}$)) during sitting work. The results showed that the normalized strength and EMG value were higher at the elbow height than the shoulder height, and increased with grip distance and shoulder adduction. The results of ANOVA showed that there was significant difference on muscle recruitment patterns among the task conditions. Therefore, it is necessary to consider work factors as well as strength to prevent workers from work-related injuries.

Design parameter dependent force reduction, strength and response modification factors for the special steel moment-resisting frames

  • Kang, Cheol Kyu;Choi, Byong Jeong
    • Steel and Composite Structures
    • /
    • v.11 no.4
    • /
    • pp.273-290
    • /
    • 2011
  • In current ductility-based earthquake-resistant design, the estimation of design forces continues to be carried out with the application of response modification factors on elastic design spectra. It is well-known that the response modification factor (R) takes into account the force reduction, strength, redundancy, and damping of structural systems. The key components of the response modification factor (R) are force reduction ($R_{\mu}$) and strength ($R_S$) factors. However, the response modification and strength factors for structural systems presented in design codes were based on professional judgment and experiences. A numerical study has been accomplished to evaluate force reduction, strength, and response modification factors for special steel moment resisting frames. A total of 72 prototype steel frames were designed based on the recommendations given in the AISC Seismic Provisions and UBC Codes. Number of stories, soil profiles, seismic zone factors, framing systems, and failure mechanisms were considered as the design parameters that influence the response. The effects of the design parameters on force reduction ($R_{\mu}$), strength ($R_S$), and response modification (R) factors were studied. Based on the analysis results, these factors for special steel moment resisting frames are evaluated.

Development of Strength Prediction Model for Lightweight Soil Using Polynomial Regression Analysis (다항회귀분석을 활용한 혼합경량토의 강도산정 모델 개발)

  • Lim, Byung-Gwon;Kim, Yun-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.39-47
    • /
    • 2012
  • The objective of this study was to develop a strength prediction model using a polynomial regression analysis based on the experimental results obtained from ninety samples. As the results of a correlation analysis between various mixing factors and unconfined compressive strength using SPSS (statistical package for the social sciences), the governing factors in the strength of lightweight soil were found to be the crumb rubber content, bottom ash content,and water-cement ratio. After selecting the governing factors affecting the strength through the correlation analysis, a strength prediction model, which consisted of the selected governing factors, was developed using the polynomial regression analysis. The strengths calculated from the proposed model were similar to those resulting from laboratory tests (R2=87.5%). Therefore, the proposed model can be used to predict the strength of lightweight mixtures with various mixing ratios without time-consuming experimental tests.

A Study on the Physical Strength Criteria for Selecting Sportsmen (회귀분석모형을 이용한 선수선발 기준표 개선방안 연구)

  • 권성국;김충영
    • Journal of the military operations research society of Korea
    • /
    • v.24 no.1
    • /
    • pp.58-67
    • /
    • 1998
  • This paper studies on physical strength measurement utilized for selecting military sportsmen. In order to estimate physical potential capability of a volunteer for a sportsmen, scores of physical strength factors are used and a regression model is developed. And then the results of this model and current physical strength measurement are compared. This paper shows that the model developed here is more effective than current measurement, since measurable physical strength factors are reduced and physical strength factors are quantified by comparing each other.

  • PDF

An Experimental Study on manufacturing Ultra-High Strength Concrete of 3116kgf/$\textrm{cm}^2$ Compressive Strength (압축강도 3116kgf/$\textrm{cm}^2$ 초강도콘크리트의 개발에 관한 실험적 연구)

  • 최세진;강석표;최희용;김규용;김진만;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.323-328
    • /
    • 1997
  • The strength of concrete depends on factors of materials, composition and manufacturing method. Among these factors, preparatory experiments are to consider and analyze the factors on compressive strength of ultra-high strength concrete according to types of aggregate, binder content, water-binder ratio, and curing methods. And the final experiment to develop the ultra-high strength over 3,000kgf/$\textrm{cm}^2$ is based on these preparatory experiments. As the result of this final expriment. We could manufacture the ultra-high strength concrete with a marvelous compressive strength concrete with a marvelous compressive strength of 3,116kgf/$\textrm{cm}^2$. This study is to compare and analyze the manufacturing system of ultra-high strength concrete of 3,116kgf/$\textrm{cm}^2$ compressive strength in the side of material development of construction industry.

  • PDF

Soil structure interaction effects on strength reduction factors

  • Eser, Muberra;Aydemir, Cem;Ekiz, Lbrahim
    • Structural Engineering and Mechanics
    • /
    • v.41 no.3
    • /
    • pp.365-378
    • /
    • 2012
  • In this study, strength reduction factors are investigated for SDOF systems with period range of 0.1-3.0 s with elastoplastic behavior considering soil structure interaction for 64 different earthquake motions recorded on different site conditions such as rock, stiff soil, soft soil and very soft soil. Soil structure interacting systems are modeled and analyzed with effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. Results are compared with those calculated for fixed-base case. A new equation is proposed for strength reduction factor of interacting system as a function of structural period of system (T), ductility ratio (${\mu}$) and period lengthening ratio (T/T). It is concluded that soil structure interaction reduces the strength reduction factors for soft soils, therefore, using the fixed-base strength reduction factors for interacting systems lead to non-conservative design forces.

The Relationship between Oral Health-Related Factors and Grip Strength in the Elderly

  • Kim, Ki-Eun
    • Journal of dental hygiene science
    • /
    • v.22 no.1
    • /
    • pp.37-43
    • /
    • 2022
  • Background: Among the health problems in old age, oral health is closely related to nutrition intake and digestion, so although it is an important factor in the well-being of the elderly along with general health, studies examining the relationship between oral health-related factors and grip strength of the elderly are insufficient. Therefore, this study intends to examine the relationship between oral health-related factors and grip strength, which are closely related to the general health of the elderly. Methods: This study used data from the 7th period of Korea National Health and Nutrition Survey (2016~2018) approved by the Research Ethics Review Committee of the Korea Centers for Disease Control and Prevention. Complex sample frequency analysis and descriptive statistics were performed, and general linear model analysis was performed to confirm the relationship between demographic characteristics, oral health -related factors and grip strength. The statistical analysis was performed using IBM SPSS Statistics for Windows, Version 23.0, and the significance test was based on type I error level of 0.05. Results: Grip strength was higher in the case of no discomfort than in the case of discomfort in relation to mastication discomfort and grip strength (B=0.927, p<0.001). In addition, the grip strength was decreased by 1.348 times when not using dental floss (p<0.001) and when not using mouth wash was 1.480 times (p<0.001). Conclusion: In this study, in the relationship between oral health-related factors and grip strength, grip strength was found to be high in the absence of mastication discomfort. and in the case of using dental floss and mouthwash the elderly showed high grip strength. Therefore, it is suggested to present a lifestyle to improve hand function and grip strength in the elderly and develop a program to increase grip strength and provide them at the same time during oral health education.

An Experimental Study on the Factors of Strength of Ultra High-Strength Concrete (초고강도콘크리트의 강도에 영향을 미치는 요인에 관한 실험적 연구)

  • Son Young Jun;Choi Maeng Ki;Kim Kwang Ki;Park Hee Con;Yang Dong Il;Jung Sang Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.41-44
    • /
    • 2005
  • The aim of this study is to develop experimentally ultra high-strength concrete with compressive strength over 100MPa with current materials by important factors to influence the compressive strength of concrete. There are so many factors which influence the manufacturing of ultra high-strength concrete. But the experimental factors selected in this study are the sand aggregate ratio, the silica fume replacement ratio, the type of aggregate, the type of superplasticizer, the fiber mixing ratio. The results of this experimental study show that it is possible to applicate in the field.

  • PDF

Comparison of the Isometric Hip Flexors Strength in Supine Position in Subjects With and Without Weak Isometric Core Strength

  • Jeon, In-Cheol
    • Physical Therapy Korea
    • /
    • v.28 no.1
    • /
    • pp.59-64
    • /
    • 2021
  • Background: Hip flexor muscles are very important in the hip joint structure as a mover and stabilizer. In addition, isometric hip flexor strength in the supine position needs to be considered with isometric core strength (WICS) to measure a precise strength in a clinical way. Objects: We compared isometric hip flexor strength in the supine position in subjects with and without WICS (between factors) and conditions with and without an external support (within factors). Methods: A total of 34 subjects (16 with WICS, 18 without WICS) participated in this study. We used the double-bent leg-lowering test to divide the subjects in two groups according to the presence of WICS. Isometric hip flexor strength was evaluated in the supine position both with and without an external support condition. The two-way mixed analysis of variance was applied to identify significant differences between groups (with vs. without WICS: between factors) and conditions (with vs. without an external support: within factors). Statistical significance was set at α = 0.05. Results: In subjects with WICS, isometric hip flexor strength was greater with an external support than without it (p = 0.0064). In subjects without WICS, there were no significant differences in isometric hip flexor strength in the presence or absence of an external support (p = 0.075). The isometric hip flexor strength was significantly greater with an external support condition in particular in subjects with WICS. Conclusion: The findings of this study reported that an external support condition in individuals with WICS may contribute to the improvement of isometric hip flexion strength in the supine position. Therefore, isometric core strength should be evaluated to distinguish the weakness between core region and hip flexors.