• 제목/요약/키워드: the spark advanced controller

검색결과 5건 처리시간 0.019초

퍼지제어방식을 이용한 SI엔진 속도제어 (Spark Ignition Engine Speed Control Using fuzzy Control Strategy)

  • 신동목;김응석;김문철;민종진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.672-674
    • /
    • 1997
  • In this paper, we study the idle speed control of the spark ignition engine. Engine idle speed control is a difficult problem because of troublesome characteristics such as severe process nonlinearities, variable time delays, time-varying dynamics and unobservable internal system states and disturbances. We investigate the intelligent control algorithms such as neural network controller and fuzzy controller for 4-cylinder 4-stroke engine.

  • PDF

압축천연가스 겸용 차량의 출력 및 토크 향상을 위한 점화 진각 제어기 설계 (Design of Spark Advanced Controller for Improvement in Power and Torque of CNG Bi-Fuel Vehicle)

  • 박진현;김성훈;조승완;최영규
    • 한국정보통신학회논문지
    • /
    • 제14권7호
    • /
    • pp.1641-1646
    • /
    • 2010
  • 최근 들어 환경에 대한 관심이 높아지면서 대기오염 방지에 비중을 둔 CNG 연료에 대한 연구가 활발하다. 그러나, 가솔린연료에 비해 출력이 감소하며, 1회 충전 거리가 짧은 단점을 가지고 있다. 특히, 토크 및 출력 저하의 원인으로는 CNG 연료가 가솔린에 비해 단위체적당 발열량이 낮고, 화염 전파 속도가 느림에 따라 혼합기가 연소되는 타이밍 손실 등에 기인한다. 본 연구에서는 타이밍 손실을 고려한 점화 진각 제어장치를 설계하여 이를 차량에 실제 장착하고, 새시 다이나모미터(Chassis Dynamometer)에서 엔진 출력 및 토크를 측정하였다. 측정된 결과 일반적인 CNG 바이 퓨얼 시스템에 비하여 최대 토크 및 출력이 향상되었다.

LPG 및 Gasoline 겸용 차량의 엔진 점화시기 변환 제어시스템 개발 (The Development of the Ignition Spark Timing Conversion System for LPG/Gasoline Bi-fuel Vehicle)

  • 전봉준;양인권;김재국;김성준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권1호
    • /
    • pp.117-123
    • /
    • 2003
  • In a bi-fuel engine using gasoline and LPG fuel, with the current ignition timing for gasoline being used, the effective performance could not be taken in LPG fuel supply mode. The ignition timing in LPG fuel mode must be advanced much more than that of gasoline mode for the compensation of its lower flame speed, due to engine torque drop. This study aims to develop the control system for ignition spark timing conversion which is composed of hardwares and control algorithm for gasoline/LPG engine. We propose the control system which can advance the ignition spark timing in LPG fuel mode more than used in gasoline fuel mode. The advance of ignition timing is achieved by change of the ignition dwell time of coil igniter. The engine torque and F/E(Fuel-Economy) in LPG fuel mode are measured to evaluate the difference of engine performance between before and alter changing ignition spark timings. The engine torque and F/E are increased respectively, which proves the developed control system is effective so much for gasoline and LPG bi-fuel engine.

LPG / 가솔린 겸용차량의 점화시기 변환에 의한 엔진성능고찰 (A Study on Engine Performance of the Ignition Spark Timing Conversion for LPG/Gasoline Bi-fuel Vehicle)

  • 전봉준;박명호
    • 한국기계기술학회지
    • /
    • 제13권3호
    • /
    • pp.39-47
    • /
    • 2011
  • In a bi-fuel engine using gasoline and LPG fuel, with the current ignition timing for gasoline being used, the optimum performance could not be taken in LPG fuel supply mode. The ignition timing in LPG fuel mode must be advanced much more than that of gasoline mode for the compensation of its higher ignition temperature. The purpose of this study is to investigate how the ignition spark timing conversion influences the engine performance of LPG/Gasoline Bi-Fuel engine. In order to investigate the engine performance during combustion, engine performance are sampled by data acquisition system, for example cylinder pressure, pressure rise rate and heat release rate, while change of the rpm(1500, 2000, 2500) and the ignition timing advance($5^{\circ}$, $10^{\circ}$, $15^{\circ}$, $20^{\circ}$). As the result, between 1500rpm, 2000rpm and 2500rpm, the cylinder pressure and pressure rise rate was increased when the spark ignition was advanced but pressure rise rate at $20^{\circ}$ was smaller value.

스파크 점화 엔진에서 희박연소의 전자제어 히스테리시스 현상에 관한 실험적 연구 (A Experimental Study on the Electronic Control Hysteresis Phenomenon of Lean Burn in Spark Ignition Engine)

  • 김응채;김판호;서병준;김치원;이치우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.475-481
    • /
    • 2004
  • Recently it is strongly required on lower fuel consumption. lower exhaust emission, higher engine performance. and social demands in a spark ignition gasoline engine. In this study. the experimental engine used at test. it has been modified the lean burn gasoline engine. and used the programmable engine management system, and connected the controller circuit which is designed for the engine control. At the parametric study of the engine experiment, it has been controlled with fuel injection, ignition timing. swirl mode, equivalence ratio engine dynamometer load and speed as the important factors governing the engine performance adaptively. It has been found the combustion characteristics to overcome the hysteresis phenomena between normal and lean air-fuel mixing ranges. by mean of the look-up table set up the mapping values. at the optimum conditions during the engine operation. As the result, it is found that the strength of the swirl flow with the variation of engine speed and load is effective on combustion characteristics to reduce the bandwidth of the hysteresis regions. The results show that mass fraction burned and heat release rate pattern with crank angle are reduced much rather, and brake specific fuel consumption is also reduced simultaneously.