• Title/Summary/Keyword: the source distance of the other

Search Result 188, Processing Time 0.028 seconds

A Study on 2-Dimensional Sound Source Tracking System IV - Mainly on Approximation of the Relative Bearing and Distance - (2차원적 음원추적에 관한 연구IV -음원위치의 근사적 결정법을 중심으로 -)

  • 문성배;전승환
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.4
    • /
    • pp.371-379
    • /
    • 2001
  • We have reported the new measurement system which was substituted digital filter for the analog filter in order to develop the optimal system that could find the time delay between each sensors with high accuracy. And also we have confirmed through the experiments that the accuracy of measurements were differentiated by the methods what kind of digital filter had been adopted. This paper suggests two algorithms which approximate the sound source's bearing and distance. One is that sound source's relative bearing can be approximately regarded as the gradient of hyperbolic asymptote, the other is that the source's range can be approximated under the condition of a long range source relative to the sensor's interval. And a series of experiments were carried out with the source's distance 22.42meters and the random bearing interval within the limits of $-90^{\circ}$~$+90^{\circ}$. As a result, we have recognized that the approximation methods could measure the bearing and distance with higher accuracy than the method using trigonometric relation could do.

  • PDF

Optimization of the Number and Position of Far Field Sources in Using the Equivalent Source Method (등가음원법에서의 원거리음원의 위치와 개수의 최적화 연구)

  • 백광현
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.10
    • /
    • pp.743-750
    • /
    • 2003
  • The equivalent source method(ESM) is used for the calculation of the internal pressure field for an enclosure which can have arbitrary boundary conditions and nay include internal objects which scatter the sound field. The advantage of using ESM is that it requires relatively low computing cost and is easy to model the internal diffracting objects. Typical ESM modeling uses two groups of equivalent source positions. One group includes the first order images of the source inside the enclosure. The Positions of the other group are usually on a spherical surface some distance outside the enclosure. The normal velocity on the surfaces of the enclosure walls is evaluated at a larger number of positions than there are equivalent sources. The sum of the squared difference between this velocity and the expected is minimized by adjusting the strength of the equivalent sources. This study is on the optimal far field sources positions when using the equivalent source method. In general, the far field sources are evenly distributed on a surface of a virtual sphere which is centered at the enclosure with a sufficiently large radius. In this study. optimal far field source locations are searched using simulated annealing method for various radii of spheres where far field sources are located. Simulation results showed that optimally located sources with adequate distance away from the enclosure center gave better result than sources with even distribution even with a smaller number of far field sources.

A Study on Patients Dose and Image Quality according to Source to Image receptor Distance in Abdomen Radiography: comparison of ESD measured and DRLs in other countries (복부일반촬영시 선원과 검출기간의 거리변화에 따른 영상 화질 및 피폭선량에 관한 연구)

  • Jang, Ji-Sung;Choi, Weon-Keun;Jung, Jae-Yon;Lee, Kwan-Sub;Ha, Dong-Yoon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.2
    • /
    • pp.39-46
    • /
    • 2012
  • Purpose : The purpose of this study was to reduce Entrance Surface Dose and maintain image quality by changing Source to Image receptor Distance. And we'd like to compare ESD on this study to DRLs in other contries. Materials and Methods : We used indirect DR system(Definium 8000, General Electric, USA)and phantom(ART-200X, Flukebiomedical, USA),glass dosimeters(GD-352M, Asahi Techno Glass, Japan)for this study. The imagies were obtained throuh 80kVp fixed, and different tube currents using AEC mode in $16{\times}16$(inch) field size and changing Source to Image receptor Distance from 100 cm to 130 cm per 10 cm unit. The phantom with attaching 5 glass dosimeters on abdomonal skin was set at supine and erect position as a anterioposterial projection on detector For measuring Entrance Surface Dose. Image analysis was conducted by histograms of Image J(1.46r) which was given from National Institutes of Health(NIH). Results : Due to inverse square law of distance, the tube currents were increasing 42.6 % in supine position and 32.6 % in erect position according to the change of Source to Image receptor Distance. While Entrance Surface Doses were rapidly decreasing 14.2 % in supine position and 29.4 % in erect position according to the change of Source to Image receptor Distance. As the results of histogram using Image J, pixel mean values from 100 cm to 110 cm, 120 cm and 130 cm were decreasing each 1.4%, 2.5%, 2.7%, 4.5%, 2.2 %, 5.8 % in supine, erect position. While standard deviations from 100 cm to 110 cm, 120 cm and 130 cm were increasing each 1.4 %, 2.5 %, 2.5 %, 4.0 %, 2.0 %, 4.9 % Consequently, there are no significant differences in abdomen images taken. Conclusion: As the results described above, we strongly recommend using long Sourceto Image receptor Distance than 100cm that we have been using. So, we should deliver less Entrance Surface Dose to the patients while maintaining image quality in abdomen radiography.

  • PDF

An Adjacency Effect in Auditory Distance and Loudness Judgments

  • Min, Yoon-Ki;Lee, Kanghee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3E
    • /
    • pp.33-39
    • /
    • 2000
  • This study investigated whether the adjacency principle. demonstrated in a perceived visual space, can be applied to auditory space. In order to demonstrate an auditory adjacency principle, multiple sound sources were varied in direction and distance in an acoustically absorbant space. Specifically, a NEAR sound source was located 10° to the left of the listener's midline at a distance of 2 meters; a FAR sound source was located 10° to the right at a distance of 5 meters. These sources served as perceptual reference points with respect to the localization of three test sounds, all at a distance of 3 meters. Two of three test sounds were directionally closer to the NEAR and FAR reference sounds, respectively. The other was between the reference sources directionally. The listener was asked to judge the perceived distances and the loudness of the three test sounds and the two reference sounds. The results indicated that the apparent distances of the test sounds were most determined by the disparity of distance between each test sound and the reference sound most directionally adjacent to it. Therefore, the findings offer evidence that the adjacency principle can be applied to the auditory space.

  • PDF

Development of a Precision Distance Sensor by Using One-dimensional CCD

  • Jang, Se-Jung;Boo, Kwang-Suck;Lim, Sung-Hyun;Lee, Seung-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.118.2-118
    • /
    • 2001
  • This research describes a development of laser distance sensor with precise resolution even in the case that the object surface has some curvature. There are typical two methods in measuring the distance by using laser light source, so called time of flight and optic-triangular methods. Both methods have an advantage and a disadvantage each other. In general, the time of flight method produces wide range of the measurement, but low accuracy. The other method is vice versa. In this research, the optic-triangular methods with one-dimensional CCD cell are proposed to obtain the precise distance measure from the sensor the surface of the curved object ...

  • PDF

Assessment of Dose and Image Quality according to the Change of Distance from Source to Image Receptor and the Examination Posture during the Skull Lateral Radiography (두부 측 방향 방사선검사 시 선원 영상수용체간 거리와 검사 자세 변화가 선량과 영상품질에 미치는 영향)

  • Eun-Hye, Kim;Young-Cheol, Joo;Han-Yong, Kim;Dong-Hwan, Kim
    • Journal of radiological science and technology
    • /
    • v.45 no.6
    • /
    • pp.483-489
    • /
    • 2022
  • This study proposes a new skull lateral examination, and provides an improved examination environment for patients and radiologists. The study was divided into three groups. One group was divided into the SID (source to image receptor distance) 110 ㎝ and 180 ㎝ in the skull lateral posture, the other group The other group was divided into an position in contact with the detector and an position without contact with the detector, and the other group was divided into male and female groups, considering that the difference in shoulder width between adult males and females would affect the dose and image quality. For dose evaluation, the ESD (entrance surface dose) was measured at the EAM (external auditory meatus), and the conditions were applied equally at 70 ㎸p, 200 ㎃, and 10 ㎃s. For image quality evaluation, SNR (signal to noise ratio) and CNR (contrast to noise ratio) were measured in frontal sinus, EAM, and sella turcica. As a result of ESD comparison, when sid 110 ㎝ to sid 180 ㎝ was changed among the three groups, ESD values decreased the most to 729.18±4.62 μ㏉ and 224.18±0.74 μ㏉ at 180 ㎝ (p<0.01). The values of SNR and CNR were statistically significant (p<0.01), but there was no qualitative difference. This shows that when the SID is 180 ㎝, it is possible to reduce the dose without lowering the image quality. So, It is suggested that the SID 180 ㎝ is used without contacting the detector when examining the skull lateral.

A proposed new configuration of a shuffle-dwell gamma irradiator

  • Wu, Hsingtzu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3176-3180
    • /
    • 2022
  • A gamma irradiator is a well-developed installation for gamma radiation sterilization. A "shuffle-dwell" mode is preferable for high dose applications. A novel configuration of a shuffle-dwell gamma irradiator is proposed to increase energy utilization and throughput, which would result in higher profitability. While the minimum distance between any irradiation position and each source pencil, the minimum distance between the neighboring irradiation positions and the size of source pencils are kept the same as the current configuration, the irradiation positions and source pencils are rearranged based on the fact that radiation is emitted in an isotropic fashion. The computational results suggest that the proposed configuration requires an 8.7% smaller area and exposes the product to 11.8% more gamma radiation in a 10.7% shorter irradiation time. In other words, the proposed configuration needs a smaller area and shorter irradiation time to have a better performance compared to the current shuffle-dwell gamma irradiator. Note that the claim is based primarily on an analytical calculation. Experimental and manufacturing among other practical considerations will be taken into account in the future work to exhaustively evaluate the performance of the proposed configuration and to compare it with that of the traditional configuration.

The Physical Penumbra of the 6MV X-ray (6MV 방사선의 물리학적 Penumbra)

  • Cho Moon-June;Kang Wee-Saing
    • Radiation Oncology Journal
    • /
    • v.9 no.2
    • /
    • pp.333-336
    • /
    • 1991
  • High energy Photon beam has a sharp beam margin due to a less side scatter and the other things. But there still remains a penumbra where the dose changes rapidly in the region near the edge of a radiation beam, although it is short in width. It is suggested that the width of the penumbra depends on the source size, distance from source to diaphragm, source to skin distance, and depth in tissue. However, it is also supposed that the other factors influence the penumbra width. In this paper, we investigate changes of the physical penumbra widths according to various field sizes and depths, by using the three dimensional dosimetry system. As a result, we found that as field size and depth increase, the physical penumbra width also increases.

  • PDF

Localization of Rotating Sound Sources Using Beamforming Method (빔 형성 방법을 이용한 회전하는 음원의 위치 판별에 관한 연구)

  • 이재형;홍석호;최종수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.837-842
    • /
    • 2004
  • The positions of rotating sound sources have been localized by experiments with the Doppler effects removed. In order to do-Dopplerize the sound signals emitted from moving sources, two kinds of signal reconstruction methods were applied. One is the forward propagation method and the other is the backward propagation method. Forward propagation method analyze the source emission time based on the instantaneous distance between sensors and the assumed source position, then the signals are reconstructed with respect to the emission time. On the other hand, the backward method uses time delay to do-Dopplerize the acquired data for the received time of reference. In both techniques, the reconstructed signal data were processed using beamforming algorithm to produce power distributions at the frequency of interest. Experiments have been carried out for varying frequencies, rotating speeds and the object distances. Forward propagation method has shown better performance in locating source position than the backward propagation method.

  • PDF

Relation between sound pressure level and auditory distance perception in anechoic room (무향실에 있어서의 음압레벨과 거리정위와의 관계)

  • Kim, Hae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1201-1206
    • /
    • 2009
  • According to a lot of investigations, distance perception is influenced by many important cues such as sound pressure level, reflections from the room surface, binaural difference (ITD and ILD), a kind of sound source, and head related transfer functions (HRTF). Two psychoacoustical experiments on auditory distance perception were conducted to examine the effectiveness of the sound pressure level loudness as one of the physical cues in the auditory distance perception under a constant loudspeaker's output level and a constant sound level at the subject's position in the absence of reflections in an anechoic room. Our experimental results showed that the perceived distance of sound image is closer than actual sound source distance with the constant loudspeaker's output level and the constant sound level. Futhermore, the perceived distance of a sound image with constant sound level increased when the actual distance increases up to approximately 2 m while the perceived distance saturated when the sound source distance exceed 2 m. On the other hand, when the condition of loudspeaker's output level was kept constantly, the perceived distance of sound image increased up to around 3m, longer than the conditions of constant sound level at the subject's position. We found that the change in the loudness as a function of distance plays an important role in the auditory distance perception in the absence of reflections..